Logout succeed
Logout succeed. See you again!

Solving AI Planning Problems with SAT PDF
Preview Solving AI Planning Problems with SAT
Planningwith SAT Introduction Encodings SolverCalls Solving AI Planning Problems with SAT SATsolving Invariants Conclusion References JussiRintanen EPCL,Dresden,November2013 Reduction of AI Planning to SAT KautzandSelman1992[KS92] Planningwith SAT Introduction SolvingtheAIplanningproblemwithSATalgorithms Earlyworks Significance Novelty: planningearlierviewedasadeductionproblem Formalizations Encodings Idea: SolverCalls propositionalvariablesforeverystatevariableforeverytime SATsolving point Invariants clausesthatdescribehowstatecanchangebetweentwo Conclusion consecutivetimepoints References unitclausesspecifyingtheinitialstateandgoalstates TestmaterialforlocalsearchalgorithmGSAT[SLM92] ResultingSATproblemsthatcouldbesolvedhadupto1000 variablesand15000clauses. Reduction of AI Planning to SAT KautzandSelman1992[KS92] Planningwith SAT Introduction SolvingtheAIplanningproblemwithSATalgorithms Earlyworks Significance Novelty: planningearlierviewedasadeductionproblem Formalizations Encodings Idea: SolverCalls propositionalvariablesforeverystatevariableforeverytime SATsolving point Invariants clausesthatdescribehowstatecanchangebetweentwo Conclusion consecutivetimepoints References unitclausesspecifyingtheinitialstateandgoalstates TestmaterialforlocalsearchalgorithmGSAT[SLM92] ResultingSATproblemsthatcouldbesolvedhadupto1000 variablesand15000clauses. Reduction of AI Planning to SAT KautzandSelman1992[KS92] Planningwith SAT Introduction SolvingtheAIplanningproblemwithSATalgorithms Earlyworks Significance Novelty: planningearlierviewedasadeductionproblem Formalizations Encodings Idea: SolverCalls propositionalvariablesforeverystatevariableforeverytime SATsolving point Invariants clausesthatdescribehowstatecanchangebetweentwo Conclusion consecutivetimepoints References unitclausesspecifyingtheinitialstateandgoalstates TestmaterialforlocalsearchalgorithmGSAT[SLM92] ResultingSATproblemsthatcouldbesolvedhadupto1000 variablesand15000clauses. Reduction of AI Planning to SAT KautzandSelman1992[KS92] Planningwith SAT Introduction SolvingtheAIplanningproblemwithSATalgorithms Earlyworks Significance Novelty: planningearlierviewedasadeductionproblem Formalizations Encodings Idea: SolverCalls propositionalvariablesforeverystatevariableforeverytime SATsolving point Invariants clausesthatdescribehowstatecanchangebetweentwo Conclusion consecutivetimepoints References unitclausesspecifyingtheinitialstateandgoalstates TestmaterialforlocalsearchalgorithmGSAT[SLM92] ResultingSATproblemsthatcouldbesolvedhadupto1000 variablesand15000clauses. Significance Planningwith SAT Planningoneofthefirst“real”applicationsforSAT(others: Introduction Earlyworks graph-coloring,testpatterngeneration,...) Significance Formalizations Later,sameideasappliedtootherreachabilityproblems: Encodings computer-aidedverification(BoundedModel-Checking SolverCalls [BCCZ99]) SATsolving DESdiagnosabilitytesting[RG07]anddiagnosis[GARK07] Invariants SATandrelatedmethodscurrentlyaleadingapproachto Conclusion References solvingstatespacereachabilityproblemsinAIandother areasofCS. Overlookedconnection: theencodingisveryclosetoCook’s reductionfromP-timeTuringmachinestoSATinhisproofof NP-hardnessofSAT[Coo71]. Significance Planningwith SAT Planningoneofthefirst“real”applicationsforSAT(others: Introduction Earlyworks graph-coloring,testpatterngeneration,...) Significance Formalizations Later,sameideasappliedtootherreachabilityproblems: Encodings computer-aidedverification(BoundedModel-Checking SolverCalls [BCCZ99]) SATsolving DESdiagnosabilitytesting[RG07]anddiagnosis[GARK07] Invariants SATandrelatedmethodscurrentlyaleadingapproachto Conclusion References solvingstatespacereachabilityproblemsinAIandother areasofCS. Overlookedconnection: theencodingisveryclosetoCook’s reductionfromP-timeTuringmachinestoSATinhisproofof NP-hardnessofSAT[Coo71]. Classical (Deterministic, Sequential) Planning ∼succincts-t-reachabilityproblemforgraphs Planningwith SAT Introduction Earlyworks Significance statesandactionsexpressedintermsofstatevariables Formalizations singleinitialstate,thatisknown Encodings SolverCalls allactionsdeterministic SATsolving actionstakensequentially,oneatatime Invariants Conclusion agoalstate(expressedasaformula)reachedintheend References DecidingwhetheraplanexistsisPSPACE-complete. Withapolynomialboundonplanlength,NP-complete. Formalization Planningwith SAT Introduction Earlyworks Aprobleminstancein(classical)planningconsistsofthe Significance Formalizations following. Encodings setX ofstatevariables SolverCalls SATsolving setAofactions(cid:104)p,e(cid:105)where Invariants pistheprecondition(asetofliteralsoverX) Conclusion eistheeffects(asetofliteralsoverX) References initialstateI :X →{0,1}(avaluationofX) goalsG(asetofliteralsoverX) The planning problem Planningwith SAT Introduction Earlyworks Anactiona=(cid:104)p,e(cid:105)isapplicableinstatesiffs|=p. Significance Formalizations Thesuccessorstates(cid:48) =exec (s)isdefinedby a Encodings s(cid:48) |=e SolverCalls s(x)=s(cid:48)(x)forallx∈X thatdon’toccurine. SATsolving Invariants Conclusion Problem References Finda ,...,a suchthat 1 n exec (exec (···exec (exec (I))···))|=G? an an−1 a2 a1