Logout succeed
Logout succeed. See you again!

Robotic Microassembly PDF
Preview Robotic Microassembly
ROBOTIC MICROASSEMBLY Editedby MICHAE¨L GAUTHIER STE´PHANE RE´GNIER IEEEPRESS AJOHNWILEY&SONS,INC.,PUBLICATION ROBOTIC MICROASSEMBLY IEEE Press 445 Hoes Lane Piscataway, NJ 08854 IEEE Press Editorial Board Lajos Hanzo, Editor inChief R. Abari M. El-Hawary S. Nahavandi J. Anderson B. M. Hammerli W. Reeve F. Canavero M. Lanzerotti T. Samad T. G. Croda O. Malik G. Zobrist Kenneth Moore, Directorof IEEE Book and Information Services(BIS) ROBOTIC MICROASSEMBLY Editedby MICHAE¨L GAUTHIER STE´PHANE RE´GNIER IEEEPRESS AJOHNWILEY&SONS,INC.,PUBLICATION Copyright2010bytheInstituteofElectricalandElectronicsEngineers,Inc. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved. PublishedsimultaneouslyinCanada Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying, recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requests tothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData: Gauthier,Michae¨l,1975- Roboticmicro-assembly/Michae¨lGauthier,Ste´phaneRe´gnier. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-48417-3(cloth:alk.paper)1.Robotics.2.Robots,Industrial. 3.Microfabrication.I.Regnier,Stephane.II.Title. TJ211.G3782010 670.42(cid:1)72–dc22 2009054236 PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 CONTENTS FOREWORD xi PREFACE xiii CONTRIBUTORS xvii I MODELING OF THE MICROWORLD 1 MICROWORLDMODELINGINVACUUMANDGASEOUS ENVIRONMENTS 3 PierreLambertandSte´phaneRe´gnier 1.1 Introduction / 3 1.1.1 Introduction on Microworld Modeling / 3 1.1.2 Microworld Modeling for Van der Waals Forces and Contact Mechanics / 5 1.2 Classical Models / 6 1.2.1 Van der Waals Forces / 6 1.2.2 Capillary Forces / 17 1.2.3 Elastic Contact Mechanics / 34 1.3 Recent Developments / 36 1.3.1 Capillary Condensation / 36 1.3.2 Electrostatic Forces / 39 References / 49 v vi CONTENTS 2 MICROWORLDMODELING:IMPACTOFLIQUIDAND ROUGHNESS 55 PierreLambertandSte´phaneRe´gnier 2.1 Introduction / 55 2.2 Liquid Environments / 55 2.2.1 Classical Models / 55 2.2.2 Sphere–Sphere and Sphere–Plane Interactions / 60 2.2.3 Theoretical Comparison Between Air and Liquid / 68 2.2.4 Impact of Hydrodynamic Forces on Microobject Behavior / 70 2.3 Microscopic Analysis / 74 2.3.1 AFM-Based Measurements / 74 2.3.2 Experiments on Adhesion Forces / 76 2.3.3 Various Phenomena / 83 2.4 Surface Roughness / 84 2.4.1 Surface Topography Measurements / 84 2.4.2 Statistical Parameters / 85 2.4.3 Models of Surface Roughness / 88 2.4.4 Fractal Parameters / 89 2.4.5 Extracting the Fractal Character of Surfaces / 93 2.4.6 Conclusion / 101 References / 102 II HANDLING STRATEGIES 3 UNIFIEDVIEWOFROBOTICMICROHANDLINGAND SELF-ASSEMBLY 109 QuanZhouandVeikkoSariola 3.1 Background / 109 3.2 Robotic Microhandling / 111 3.2.1 Microhandling System / 111 3.2.2 Microhandling Strategies / 112 3.3 Self-Assembly / 115 3.3.1 Working Principle / 116 3.3.2 Self-Assembly Strategies / 117 3.4 Components of Microhandling / 119 3.4.1 Feeding / 119 3.4.2 Positioning / 120 3.4.3 Releasing, Alignment, and Fixing / 121 CONTENTS vii 3.4.4 Environment / 122 3.4.5 Surface Properties / 123 3.4.6 External Disturbance and Excitation / 125 3.4.7 Summary and Discussion / 126 3.5 Hybrid Microhandling / 127 3.5.1 Case Study: Hybrid Microhandling Combining Droplet Self-Alignment and Robotic Microhandling / 128 3.5.2 Analysis of Droplet Self-Alignment-Based Hybrid Microhandling / 136 3.5.3 Summary / 138 3.6 Conclusion / 138 References / 139 4 TOWARDAPRECISEMICROMANIPULATION 145 Me´lanieDafflonandReymondClavel 4.1 Introduction / 145 4.2 Handling Principles and Strategies Adapted to the Microworld / 145 4.2.1 State of the Art of Micromanipulation Principles / 146 4.2.2 Adhesion Ratio at Interfaces / 146 4.2.3 Adhesion-Based Micromanipulation / 150 4.2.4 Grasping—A Special Case of Adhesion Handling / 159 4.2.5 Case of an Additional Force Acting at the Interface / 162 4.2.6 Caseof anExternalForceActing onthe Component / 163 4.3 Micromanipulation Setup / 164 4.4 Experimentations / 166 4.4.1 Microtweezer Family / 168 4.4.2 Inertial Microgripper Based on Adhesion / 173 4.4.3 Vacuum Nozzle Assisted by Vibration / 177 4.4.4 Thermodynamic Microgripper / 180 4.5 Conclusion / 184 References / 185 5 MICROHANDLINGSTRATEGIESANDMICROASSEMBLY INSUBMERGEDMEDIUM 189 Michae¨lGauthier 5.1 Introduction / 189 5.2 Dielectrophoretic Gripper / 190 5.2.1 Principle of Dielectrophoresis / 190 viii CONTENTS 5.2.2 Application of the Dielectrophoresis in Micromanipulation / 193 5.3 Submerged Freeze Gripper / 196 5.3.1 Ice Grippers in the Air / 196 5.4 Chemical Control of the Release in Submerged Handling / 202 5.4.1 Chemical Functionalization / 203 5.4.2 Experimental Force Measurements / 204 5.4.3 Modeling of Surface Charges / 210 5.4.4 Application of Functionalized Surfaces in Micromanipulation / 211 5.5 Release on Adhesive Substrate and Microassembly / 212 5.5.1 Handling and Assembly Strategy / 212 5.5.2 Robotic Microassembly Device / 214 5.5.3 First Object Positioning / 216 5.5.4 Experimental Microassembly / 217 5.5.5 Insertion / 218 5.6 Conclusion / 221 References / 222 III ROBOTIC AND MICROASSEMBLY 6 ROBOTICMICROASSEMBLYOF3DMEMSSTRUCTURES 227 NikolaiDechev 6.1 Introduction / 227 6.2 Methodology of the Microassembly System / 228 6.2.1 Purpose of the Microassembly System / 228 6.2.2 System Objectives / 228 6.2.3 Microassembly versus Micromanipulation / 228 6.2.4 Microassembly Concept / 229 6.2.5 Interface Between Microassembly Subsystems / 229 6.3 Robotic Micromanipulator / 230 6.4 Overview of Microassembly System / 232 6.4.1 Bonding a Microgripper to the Probe Pin of the RM / 232 6.5 Modular Design Features for Compatibility with the Microassembly System / 239 6.6 Grasping Interface (Interface Feature) / 239 6.7 PMKIL Microassembly Process / 241 6.7.1 Grasping a Micropart / 242 6.7.2 Removing the Micropart from Chip / 243