loading

Logout succeed

Logout succeed. See you again!

ebook img

Radiation fields for nanoscale systems PDF

file size0.18 MB
languageEnglish

Preview Radiation fields for nanoscale systems

physicastatussolidi, 11October2012 Radiation fields for nanoscale systems MingLiangZhang,D.A.Drabold*, DepartmentofPhysicsandAstronomy,OhioUniversity,Athens,Ohio45701 2 1 ReceivedXXXX,revisedXXXX,acceptedXXXX 0 PublishedonlineXXXX 2 t c Keywords: radiation,temporalcoarsegraining,semi-classicalradiationtheory,quantumelectrodynamics. O ∗Correspondingauthor:[email protected], [email protected] 0 1 ] h For a group of charged particles obeying quantum me- Five radiation fields are perpendicular to the canonical c chanics interacting with an electromagnetic field, the momentumof a single chargedparticle. For a group of e charge and current density in a pure state of the sys- charged particles, a new type of radiation field is pre- m tem are expressed with the many-body wave function dictedtobeperpendiculartoA(x ,t)×[∇×(∇ Ψ′)], j j t- of the state. Using these as sources, the microscopic whereΨ′ isthemany-bodywavefunction.Thiskindof a Maxwell equations can be written down for any given radiationdoesnotexistforasinglechargedparticle.The t s purestate ofa many-bodysystem.By employingsemi- macroscopic Maxwell equations are derived from the t. classicalradiationtheorywiththesesources,themicro- correspondingmicroscopicequationsforapurestateby a scopic Maxwell equations can be used to compute the the Russakoff-Robinson procedurewhich requires only m strong radiation fields produced by interacting charged a spatial coarse graining. Because the sources of fields - quantalparticles.Forachargedquantalparticle,threera- are also the responses of a system to an external field, d diationfieldsinvolveonlythevectorpotentialA.Thisis one also has to give up the temporalcoarse grainingof n o anotherexampledemonstratingtheobservabilityofvec- thecurrentdensitywhichisoftensupposedtobecritical c torpotential. inthekineticapproachofconductivity. [ 1 Copyrightlinewillbeprovidedbythepublisher v 8 8 1 Introduction Thispaperdiscussesthreecloselyre- bound states and coherent radiation from many charged 8 latedproblemsforagroupofnon-relativisticchargedpar- particles. To further exploreradiation phenomenain con- 2 ticlesobeyingquantummechanics(QM):(1)theradiation densedphases,weneedanalternativemethodforcomput- . 0 fields produced by the current density in a pure state of ingfield. 1 the many-bodysystem; (2) derivationof the macroscopic 2 Maxwell equations from the corresponding microscopic 1 equations in a given pure state; and (3) the consequence The “neoclassical” or semi-classical radiation the- : v of the averaging procedure used in (2) to computing the ory (SCRT) of E. T. Jaynes[12] is concerned with the i electricalconductivity. strongradiationofarelativisticornon-relativisticcharged X particle. The motion of the particle is treated quan- r Incondensedphases,thereexistabundantradiationre- tum mechanically while the electromagnetic field is a latedphenomena.Cherenkovradiationandtransitionradi- treated classically[8,9,10,11,12]. The SCRT has suc- ation are two prominent examples[1]. Although quantum ceeded in treating spontaneous emission, absorption, electrodynamics(QED) is believedto be applicableto all induced emission[13,14], photo-dissociation, Raman radiationproblems,itisonlyfeasibletocalculatetheweak scattering[15], radiative level shifts[16] and absorption field(afewphotons)producedbyafewchargedparticles ofradiationbydiffusiveelectron[17].Thusitisnaturalto withperturbationtheory[2,3,4,5,6,7].QEDisdifficultfor extend SCRT to the radiation field caused by a current- thelongtimeevolution[8],thereactionoftheatomonthe carryingpurestateofmanynon-relativisticchargedparti- appliedfield[9,10],theeffectofboundaryconditions[11], cles.Inthispaper,wemergeresultsfromthemicroscopic Copyrightlinewillbeprovidedbythepublisher 2 Firstauthoretal.:Shorttitle response method (MRM)[18,19] with concepts of SCRT whereH′(t) = H +H (t) is thetotalHamiltonianfor fm toextendthelattertomany-particlesystems. S+F,H istheHamiltonianofsystem,H (t)isthefield- fm matterinteraction: Since the pioneering work of Lorentz[20], many schemes have been suggested to derive the macroscopic Maxwell equations from the corresponding microscopic Ne i¯he H (t)= { [A(r ,t)·∇ +∇ ·A(r ,t)] (2) fm j j j j equations[21,22,23]. To obtain the macroscopic fields 2m Xj=1 and sources, usually both temporal coarse graining and spatial coarse graining are taken in addition to ensemble e2A2(r ,t) j average. By assuming that the motion of charged parti- + +eφ(r ,t)} j 2m cles obeys classical mechanics (CM), Russakoff[24] and Robinson[25] (RR) provedthat (i) only the spatialcoarse N i¯hZ e L grainingisrelevant;(ii)thespatialcoarsegrainingiscom- + {− [A(WL,t)·∇L+∇L·A(WL,t)] 2M patible with the ensemble average[26]. Since the motion LX=1 L of conduction electrons in solids is described by QM, it (Z e)2A2(W ,t) L L is desirable to extend Russakoff-Robinson’sprocedure to + −ZLeφ(WL,t)}. 2M suchasituation. L The time dependence of H (t) comes from the ex- Dropping the temporal coarse graining has a pro- fm foundconsequence.Inbothmicroscopicandmacroscopic ternal field. The arguments of Ψ′ are (r1,r2,··· ,rNe; Maxwellequations,currentdensityandchargedensityare W1,W2,··· ,WN;t). In QM, the state of the system at time t is described the sources of electromagnetic field. On the other hand, by the solution Ψ′(t) of Eq.(1), the microscopic charge currentdensity is also the response of a system to an ex- ternal field. Therefore Russakoff-Robinson’s procedure density ρΨ′ and current density jΨ′ in state Ψ′ are com- means that the temporal coarse-grained average is irrele- pletelydeterminedbyΨ′(t).Themicroscopicchargeden- vant to derive the irreversibility caused by a conduction sity ρΨ′ in state Ψ′ is ρΨ′(r,t) = dτΨ′∗ρ(r)Ψ′, where process. ρ(r) = eδ(r − r ) − ZReδ(r − W ) is the j j L L L InSec.2,wewriteoutthemicroscopicMaxwellequa- charge dePnsity operator of thPe system, dτ b= dr1dτ1 is b tionfor a pure state. In Sec.3, we applySCRT to analyze the volume element in the whole configurational space, theradiationfieldsfromthecurrentdensitycausedbyone dτ1 = dr2···drNedW1···dWN. Carrying out the in- and many charged particles. For a quantal charged parti- tegrals and using the antisymmetry of Ψ′ for exchanging cle,threeradiationfieldsinvolveonlythevectorpotential. thecoordinatesoftwoelectrons, Herewehaveonemoreexampledemonstratingthephys- ical reality of vector potential. In contrastto the classical ρΨ′(r,t)=N e dτ1Ψ′Ψ′∗− Z e dτLΨ′Ψ′∗, radiationfield,fiveradiationfieldsareperpendiculartothe e Z X L Z L canonical momentum of particle. For a group of charged (3) particlesobeyingquantummechanics,oneofitsradiation wheredτL =dr1···drNedW1···dWL−1dWL+1···dWN, fieldsisperpendiculartoA(xj,t)×[∇×(∇jΨ′)],where theargumentsoftheΨ′ inthefirsttermare(r,r2···rNe; Ψ′ is the many-body wave function, A(xj,t) is the vec- W1···WN),theargumentsoftheΨ′ inthesecondterm torpotentialfeltbythejth particleattimet.Thiskindof are(r1,··· ,rNe;W1,··· ,WL−1,r,WL+1··· ,WN;t). radiation does not exist for a single charged particle. In 2.1 Microscopic Maxwell equations in a pure Sec.4, we apply the RR procedure to derive the macro- state If the system is in a state Ψ′(t), the microscopic scopic Maxwell equations for a group of charged parti- Maxwellequationsare cles obeying QM. We show that without temporal coarse grained average, the irreversibility of conduction process ∇·bΨ′ =0, ∇×eΨ′ =−∂bΨ′/∂t, (4) isstillincludedinthepresenttheory. and 2 MicroscopicMaxwellequationsforapurestate Consider a system (S) with Ne electrons and N nuclei ∇·eΨ′ =ρΨ′/ǫ0, c2∇×bΨ′ =jΨ′/ǫ0+∂eΨ′/∂t, (5) inanexternalelectromagneticfield(F)describedbyvec- torandscalarpotentials(A,φ).Denotethecoordinatesof where eΨ′ and bΨ′ are the microscopic electric field and Ne electronsasr1,r2,··· ,rNe,thecoordinatesofN nu- magneticinductionat(r,t)inpurestateΨ′. cleiasW1,W2,··· ,WN.Intheexternalfield(A,φ),the Applying∂/∂tonthefirstinhomogeneousequationin stateΨ′(t)ofthesystemisdeterminedbythemany-body (5),and∇·onthesecond,onehasthecontinuityequation Schro¨dingerequation forapurestateΨ′[27]: i¯h∂Ψ′/∂t=H′Ψ′, (1) ∂ρΨ′(r,t)/∂t+∇·jΨ′(r,t)=0. (6) Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 3 N (Z e)2 Eq.(6)helpsusfindthemicroscopiccurrentdensity[18,19] − L A (r,t) dτLΨ′∗Ψ′, jΨ′ fromρΨ′: LX=1 ML α Z jΨ′(r,t)= i¯h2emNe Z dτ1(Ψ′∇Ψ′∗−Ψ′∗∇Ψ′) awrheere(r,thre2,·a·rg·u,mrNene;tsWo1f,·Ψ·′· ,iWn tNhe;t)1,stthaned a2rngdumliennetss of the Ψ′ in the 3rd and 4th lines is (r1,··· ,rNe; − Nmee2A(r,t)Z dτ1Ψ′∗Ψ′ (7) Wwit1h,·E·q·.(,7W), wL−e1fi,nrd,WthaLt+t1he··c·u,rWrenNtd;etn).sCityominpastraintegΨEq′.i(s12) relatedtothetimederivativeofpolarizationinstateΨ′by: N i¯hZ e −LX=1 2MLL Z dτL(Ψ′∇Ψ′∗−Ψ′∗∇Ψ′) jαΨ′(r,t)= ∂PαΨ∂′t(r,t), α=x,y,z. (13) N (Z e)2 − L A(r,t) dτLΨ′∗Ψ′, Since both the free carriers and the bound electrons are LX=1 ML Z includedin Eq.(8), the polarizationPαΨ′ definedin Eq.(9) contains the contributions from both carriers and bound where the arguments of the Ψ′ in the 1st and 2nd lines electrons. aorfeth(er,rΨ2′,·i·n· ,trhNee;3rdWa1n,d···4t,hWlNine;ts),isth(er1,a·rg··um,reNnets; by t2h.e3cRoaudplieadtioeqnufiateioldnsT(h1e,4s,5ta)t[e14o]f.SIn+Fordiisndareytemrmaitnereid- W1,··· ,WL−1,r,WL+1··· ,WN;t).Thecurrentden- als,theinducedmotionofthechargedparticlesbyaweak sity(7)isvalidforanarbitrarygauge.InEq.(7),thecontri- butiontojΨ′ fromnucleiissimilartothatfromelectrons; external field is non-relativistic: the energy radiated by a particleismuchsmallerthanthemechanicalenergyofthat wewillnotkeepthelasttwoterms. particle.Usingdirectproduct|Ψ′i⊗|e,bitorepresentthe 2.2 Currentdensityanddipolemomentdensity stateofS+F isthenallowed. The αth (α = x,y,z) component of the dipole density The radiation fields produced by a current-carrying operatorisdefinedas purestateΨ′(t)are[28]: Ne N ρbdα(r)=Xj=1erjαδ(r−rj)−LX=1ZLeWLαδ(r−WL()8.) bΨra′d(x,t)= 4πǫ10c3 Z d3x′[∂∂jtΨ′′(x′,|tx′)−]rext′×|2(x−x′), WemayextractthepolarizationPΨ′(r,t)instateΨ′from (14) α and dα(t)|Ψ′ =Z drPαΨ′(r,t), (9) eΨra′d(x,t)= 4πǫ10c2 Z d3x′ (15) wheredα(t)|Ψ′ istheαthcomponentoftheinduceddipole {[∂∂jtΨ′′(x′,t′)]ret×(x−x′)}×(x−x′), instateΨ′: |x−x′|3 dα(t)|Ψ′ =Z drZ dτΨ′∗ρdαΨ′, α=x,y,z. (10) w∂jhΨe′r(ex′t,′t′)=/∂tt′ −oft|hxe−curxr′e|n/tc.deIntsiistytthheattidmeteerdmeirnivesattihvee b radiationfield. The time dependenceof the induceddipolein state Ψ′(t) Denote x′ as the origin of the source distribution, x′ resultsfromthetimedependenceofΨ′(t).Thetimederiva- 0 an arbitrarypointin a localized chargedistribution,x the tiveofthepolarizationcanbefoundfrom∂dα(t)|Ψ′/∂t: observationpoint.TheintegrandsofEqs.(14,15)canbeex- ∂∂tdα(t)|Ψ′ =Z dr∂∂tPαΨ′(r,t). (11) pcaaunsdeedthienraadsimataiollnpfiaerladmreepterresεen=ts|oxu′t−goxin′0g|/e|nxer−gyx,′0it|.mBues-t have asymptotic form proportionalto |x−x′|−1[27,28]. 0 CombiningEqs.(1,10,11)andintegratingbyparts,onehas: Theelectricfieldandthemagneticinductioninfarregion are ∂PΨ′(r,t) N i¯he ∂Ψ′∗ ∂Ψ′ α∂t = 2em Z dτ1(Ψ′ ∂r −Ψ′∗∂r ) (12) bΨ′ =−n×pΨ′, eΨ′ =cn×(n×pΨ′), (16) α α rad rad −Nmee2Aα(r,t)Z dτ1Ψ′∗Ψ′ awnhderpeΨn′ a=re((xx−,tx)[′02)9/,|3x0−].xT′0h|e,tvheecatorgrufimelednptsΨo′fiesΨrga′idv,ebnΨrba′yd N i¯hZ e ∂Ψ′∗ ∂Ψ′ −LX=1 2MLL Z dτL(Ψ′ ∂rα −Ψ′∗∂rα) pΨ′(x,t)= 4πǫ10c3 Z d3x′ (17) Copyrightlinewillbeprovidedbythepublisher 4 Firstauthoretal.:Shorttitle ∞ (|x′−cx′0|cosθ)q ∂q+1jΨ′(x′,t−s0), FromEqs.(17,22)wecanseethatinthedipoleapprox- q! ∂tq+1 Xq=0 imation the quantal acceleration a(t)|ψ′ is the source of radiation. The radiation fields produced by the first two whereθistheanglebetween(x−x′)and(x′−x′).The 0 0 terms in Eq.(19) are already knownin CM. The last term q =0termgivesthedipoleapproximation,theq =1term in Eq.(19) is the new feature of a quantal charged parti- gives the quadrupole and magnetic dipole approximation cle. The corresponding radiation fields are perpendicular etc[29,30]. to(∇×B),theyshouldbedetectableforachargedparti- Ψ′ ′ ′ ′ clemovinginanon-uniformmagneticfield.Bytestingthe 3 Radiationfieldscomputedfrom∂j (x ,t )/∂t polarization of scattered fields, it can also be observedin thescatteringphenomenon. 3.1 A moving electron Let us consider the motion Letusconsidermoregeneralradiationfieldsproduced of an electron in an electromagnetic field (A,φ) and an- by a quantal charged particle moving in an external field otherexternalfieldU′(x).Analkaliatominadilutealkali (φ,A).Sinceweconsideronlynon-relativisticmotion,the gasisanexample.Denotethesingleparticlewavefunction effectofself-fieldsoftheparticleonitsmotioncanbene- odf[ thde3xpψar′t∗icrlψe′a]/sdψt′(inx,stt)a,tetheψa′(vxe,rat)gecvanelobceityfovu(ntd)|ψfr′o=m glected.TakingtimederivativeinEq.(20),onefinds ScRhrodingerequation[14,18]: ∂jψ′(x,t)/∂t= e2Eψ′ψ′∗− e ∇U′(x)ψ′ψ′∗ v(t)|ψ′ = 2im¯h Z d3x(ψ′∇ψ′∗−ψ′∗∇ψ′) m m e2 e3 e + [ψ′(i¯h∇ψ′∗)+ψ′∗(−i¯h∇ψ′)]×B− (A×B)ψ′ψ′∗ − d3xψ′∗A(x,t)ψ′. (18) 2m2 m2 mZ ψTh′(exa,vt)eriasg[1e4a,1cc8e]leration a(t)|ψ′ = dv(t)|ψ′/dt in state +me A(∇·jψ′)− me32ψ′ψ′∗(A·∇)A i¯he2 a(t)|ψ′ =m−1Z d3xψ′∗[eE−∇U′]ψ′ +2m2{ψ′[(∇ψ′∗)·∇]A−ψ′∗[(∇ψ′)·∇]A} 2 ¯h e +me2 Z d3xψ′∗(−i¯h∇−eA)ψ′×B +4m2[ψ′∇∇2ψ′∗+ψ′∗∇∇2ψ′−(∇ψ′∗)∇2ψ′−(∇ψ′)∇2ψ′∗] i¯he i¯he2 − d3xψ′∗ψ′(∇×B), (19) + {ψ′[A·∇](∇ψ′∗)−ψ′∗[A·∇](∇ψ′)]} 2m2 Z 2m2 wheretheargumentsofthefieldsare(x,t).Thefirstterm i¯he2 + [(∇ψ′∗)A·∇ψ′−(∇ψ′)A·∇ψ′∗] in Eq.(19) is the acceleration caused by the electric field 2m2 andexternalfieldU′,thesecondtermisthemagneticforce. i¯he2 TheyareexpectedfromCM.Thethirdtermisaquantum + (ψ′∇ψ′∗−ψ′∗∇ψ′)∇·A, (23) effect: an additional small component along the average 2m2 directionof∇×B.Theratioofthethirdtermtothesec- whereE(x,t)=−∇φ(x,t)−∂A(x,t)/∂tandB(x,t)= ondis∼a/L,whereaisthecharacteristiclengthofwave ∇×A(x,t)aretheelectricfieldandmagneticinduction, function ψ′, L is the characteristic length scale in which the arguments of A, B, E and ψ′ are (x,t). Integrating magneticfieldchanges. Eq.(23)overspace d3x,onecanchecksumrule(22)us- Forasingleelectron,Eq.(7)reducesto: ing integration by Rparts. However one observes that, ac- cordingtoEqs.(14,15),theradiationfieldisdeterminedby jψ′(x,t)= i¯he(ψ′∇ψ′∗−ψ′∗∇ψ′) the time derivativeof ∂jψ′(x,t)/∂t currentdensityrather 2m thanbytheaverageaccelerationa(t). − e2A(x,t)ψ′∗ψ′. (20) The radiation fields produced by the first three terms m areperpendiculartotheelectricforce,externalforceofU′, ComparingEq.(18)andEq.(20),wehave: and magnetic force respectively. They are well known in theclassicaldescription[27,28,29]. v(t)|ψ′ =e−1Z d3xjψ′(x,t). (21) tumTfheeatruermesaionfintghetemrmicsroosfcEopqi.(c2c3u)rrreesnutltdfernosmitythjeψ′quinana- Theaverageaccelerationandthetimederivative∂jψ′(x,t)/∂t purestateψ′.AccordingtoEqs.(14,15),theradiationfields producedbythefourthtermareperpendicularto(A×B), ofcurrentdensityarerelatedby: the radiationfieldsproducedbythe fifthtermareperpen- ∂jψ′(x,t) dicular to A. The radiation fields produced by the sixth a(t)|ψ′ =e−1Z d3x ∂t . (22) termsareperpendicularto(A·∇)A.Theratioofthefourth Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 5 term to the second term is λ/a, where λ is the character- − e3 [A×B]n′+ e A(r,t)(∇·jΨ′)− e3 [(A·∇)A]n′ m2 m m2 isticlengthofA.Thefifthtermisthesameorderofmag- nitude as the third term. The ratio of the fifth term to the i¯he2N + e dτ1{Ψ′[(∇Ψ′∗)·∇]A(r,t) secondtermisA/(h¯/ea),forordinarymagneticfieldthis 2m2 Z isasmallnumber.Thesixthtermisthesameorderofmag- nitudeasthefourthterm. −Ψ′∗[(∇Ψ′)·∇]A(r,t)} The radiation fields producedby the seventh term are 2 ¯h eN perpendicular to [(∇ψ′) · ∇]A. The ratio of the seventh + e dτ1[Ψ′∇∇2Ψ′∗+Ψ′∗∇∇2Ψ′ term to the second term is ∼ (h¯/ea2)/B. The radiation 4m2 Z fieldsproducedbytheeighthtermareperpendiculartothe −(∇Ψ′∗)∇2Ψ′−(∇Ψ′)∇2Ψ′∗] canonicalmomentum∇ψ′.Theratiooftheeighthtermto the second term is ∼1. In CM, no such a radiation field +i¯he2Ne dτ1{Ψ′[A(x ,t)·∇](∇ Ψ′∗) exist. The radiation field producedby the ninth terms are 2m2 Z j j X perpendicularto[A·∇](∇ψ′).Theratiooftheeighthand j theninthtermstothesecondtermisλ/a. −Ψ′∗[A(x ,t)·∇](∇ Ψ′)]} j j The radiation fields produced by the tenth term of Eq.(23) are also perpendicularto (∇ψ′)A·∇ψ′∗, where +i¯he2Ne dτ1[(∇Ψ′∗)A(x ,t)·∇ Ψ′ −i¯h∇ = mv+eAisthecanonicalmomentumoperator. 2m2 XZ j j j In contrast to the eighth term, which does not depend on vectorpotential,the tenth term dependson A·∇ψ′. The −(∇Ψ′)A(xj,t)·∇jΨ′∗] ratioofthetenthtermtothefifthtermis∼1.Boththefifth i¯hN e2 and the tenth terms exist for a constant vector potential. + e dτ1(Ψ′∇Ψ′∗−Ψ′∗∇Ψ′) ∇ ·A(x ,t) Theradiationfieldsproducedbytheeleventhtermareper- 2m2 Z X j j j pendicular to (ψ′∇ψ′∗)∇ · A. The eleventh term is the i¯he2N sameorderofmagnitudeastheseventhterm. + e dτ1 A(x ,t)×{[∇×(∇ Ψ′∗)]Ψ′ Before the Bohm-Aharonov effect was discovered, it 2m2 Z X j j ′ ′ j had been assumed that any (φ ,A ) is indistinguishable from (φ,A) if they satisfy A′ = A + ∇Λ and φ′ = −[∇×(∇jΨ′)]Ψ′∗}, φ+∂Λ/∂t, where is Λ is an arbitrary scalar function of where ∇ is abbreviatedas ∇. n′(r,t) = N dτ′Ψ′Ψ′∗ r e timeandcoordinate.TheBohm-Aharonoveffectgivesthe is the number density of electrons in state Ψ′.RU and U′ first example that beside B = ∇ × A, vector potential are the interactionbetweentwo electronsand the interac- canbedetectedinanotherway:thephaseshift e A·dx. h¯ tion betweenan electronanda nucleus.Because the con- The radiation fields produced by the fourth, fifHth, sixth, tributions from nuclei are less important and do not have ninth,tenthandeleventhtermsinvolveeitherAor∇·A. anynewfeaturesforvisiblelight,theyarenotincludedin Theydemonstratetheobservabilityofvectorpotential:one Eq.(24).Ofcoursethenuclearcontributionsareimportant maydetecttheseradiationfieldsoutsidealongsolenoidfor forinfraredradiation. whichB=0butA6=0. There are 12 terms in Eq.(24). The first to eleventh Eq.(23) is a resolution of ∂jΨ′(x′,t′)/∂t′. It directly termsareamany-bodygeneralizationofthecorresponding resultsfromthetimedependentSchrodingerequationand single-particletermsinEq.(23).Thecoherentscatteringin Eq.(20).Onemaywonderwhetheraregroupingtheterms CM is produced by several particles in which their posi- inEq.(23)leadstoadifferentexplanationfortheradiation tionsarecorrelatedintherangeofonewavelenth[27,28]. fields.Theanswerisno:becauseEqs.(14,15)arelinearin Thisfeatureisalsoinheritedbythefirsttoeleventhterms. ∂jΨ′(x′,t′)/∂t′, a recombinationof terms only results to Wedon’thavesumrulesforthesystemwithmorethanone a differentchoice of the basis of fields. The new basis of chargedparticles. fieldisasuperpositionoftheoldfields. ThetwelfthtermofEq.(24)exitsonlyforasystemwith 3.2 A group of charged particles Taking the time morethanonechargedparticlewhichobeyQM,andrep- derivativeinEq.(7),weobtain resentsanewfeatureoftheradiationfieldproducedbythe motionofmanychargedparticles.Ifthereisonlyonepar- ∂jΨ′(r,t)/∂t= e2E(r,t)n′(r,t) (24) ticle,∇×(∇jΨ′)=0,Eq.(24)isreducedtoEq.(23).The m radiationfieldsemittedbythetwelfthtermofEq.(24) are perpendiculartoA(x ,t)×[∇×(∇ Ψ′)],andaredifferent j j +eNe dτ1Ψ′Ψ′∗[− ∇U(r,x )− ∇U′(r,W )] tothoseemittedbythefirsttotheeleventhterms.Thera- m Z k α tioofthetwelfthtermtothemagneticforceisλ/a′,where X X k α a′isthecharacteristiclengthofΨ′.Itshouldbedetectable e2N forthescatteringofvisiblelightbyparticlessmallerthan + e{ dτ1[Ψ′(i¯h∇Ψ′∗)+Ψ′∗(−i¯h∇Ψ′)]}×B(r,t) 2m2 Z 100nm. Copyrightlinewillbeprovidedbythepublisher 6 Firstauthoretal.:Shorttitle In QED, the coupling between electromagnetic field TheargumentsofeΨ′,bΨ′,jΨ′ andρΨ′ are(R,t),thespa- andchargedparticlesistreatedasaperturbation.Theob- tialdifferential∇ isrespecttothespatiallycoarsegained R servablephotonsareexpressedbyexternallines.Tocalcu- coordinate R. Because the spatial coarse graining (25) is lateaprocesswithnphotons,oneneedsanth ordertran- alinearmap,andEqs.(4,5)arelinear,Eqs.(26,27)arealso sitionamplitude[2,3].Thisisimpracticalforastrongfield linearaboutalltruncatedquantitiesappearinthem. (manyphotons)producedbyalargenumberofinteracting Ifonedistinguishesthefreechargesandboundcharges chargedparticles. In SCRT, H is treated at zero order. fm Becausenohighenergyphotonappearsintheusualstateof in ρΨ′ and jΨ′, various order electric and magnetic mo- a condensed phase and nanoscale system, Eqs.(14,15,24) ments of the bound chargesalso appear as the sources of aresuitablefortheemissionandscatteringoflight[12,13, fields[24,25].Suchadescriptionappearsintextbooks[27, 14,15,16]. 28], and is convenient for the crystalline metals, alloys (thereisacleardistinctionbetweenfreecarriersandbound 4 MacroscopicMaxwellequations Forananoscale charges) and insulators at low frequency. In amorphous systemoramacroscopicsystem,weusuallycannotspecify semiconductors,thehoppingprobabilityforlocalizedcar- theinitialconditionofthesystempreciselyinthesensethat riers is[34] ∼ 1012 −1013sec−1. On a time scale shorter thestateofthesysteminthefuturecanbepredictedtothe than 10−12sec, one cannot distinguish a localized carrier maximumextentallowedbyQM[36].Theresultsobtained from a boundcharge.Thereforefor (i) metals, alloys and in Sec.3 are not directly applicable. To explore radiation insulatorsathighfrequency(inter-bandtransition);and(ii) fieldsproducedbyamacroscopicornanoscalesystem,we plasma[35] and amorphoussemiconductors[18,19,32,33] havetoaveragetheaboveresultsoverarepresentativeen- atanyfrequency,itisconvenientnottodistinguishthecon- semble.Inotherwords,weneedthemacroscopicMaxwell tributions from carriers and from bound electrons in ρΨ′ equationsforagroupofchargedparticlesobeyingQM. andjΨ′,i.e.nottomakethemultipoleexpansion. α Suppose that the system is in a good thermal contact with a reservoir (B) such that after a short equilibration For the following three reasons, we do not need[24, time,thesystemreachesasteadystate:thethermodynamic 25,27] to take an additional temporal coarse grained av- state of the system is specified by the intensive parame- erage over fields and sources at any stage. First of all, ters of B (temperature, chemical potential etc.). The heat Eqs.(4,5) are linear in all quantities appearing in them: evolved is transferred to the bath[31,32,33]; The motion allthequantitiesareadditive.Thereforefortypicalcut-off ofsystemhasthesamefrequencyastheexternalfield. wave vectork0 = 106cm−1 and numberdensityof parti- 4.1 Spatial coarse grained average To describe clesn = 1022cm−3,therelativefluctuationofatruncated thefinitespatialresolutioninamacroscopicmeasurement, quantityissmall[27]∝n−1/2k3/2 ∼10−2.Thespatialav- 0 for each microscopic quantity ξΨ′(r,t) defined in pure erage(25)isenough.Secondly,thetimev−1k−1 spentby 0 stateΨ′(t),oneintroduces[24,25]atruncatedquantityξΨ′ aparticlewithspeedv ∼106m·sec−1traversingadistance : k0−1is10−14sec,isstillintherangeofatomicormolecular ξΨ′(R,t)= ∞ d3rξΨ′(R−r,t)f(r), (25) motions[27],averagingoversuch a time periodafter spa- Z tial average(25) is pointless.Third,beforethespatial av- −∞ erage(25),ifoneaveragesoveratimeperiodshorterthan where the scalar weight function f(r) satisfies two the time scale ofatomicandmolecularmotions,onecan- conditions: (i) ∞ d3rf(r) = 1; and (ii) F(k) = −∞ noteliminatefastfluctuation[27].Ontheotherhand,ifone −∞∞d3re−ik·rfR(r) → 0 for k > k0. k0 is solely de- averages over a time period longer than the time scale of tRerminedby the type of problemand calculationwe have atomicandmolecularmotions,onesmearedorevenelim- in mind[25]. Condition (ii) means that the spatial Fourier inatesthescatteringphenomenon[1]. components of the field variables are irrelevant above a cut-off wave vector k0. ξΨ′ is ρΨ′ or any Cartesian To obtain a macroscopic observable from the corre- componentof e, b and jΨ′. Using the truncated quantity sponding microscopic quantity in the pure state, we first truncatethemicroscopicquantityinagivenpurestateand ξΨ′(R,t) is stricter than the simple coarse grained aver- thentakeanensembleaverage.Foragroupofchargedpar- ageΩR−1 r∈ΩRd3rξΨ′(r,t)forsolids[25],whereΩR isa ticlesinteractingwithanelectromagneticfield,wecanre- physicaliRnfinitesimalvolumearoundpointR. placetheensembleaveragewithanaverageoverallpossi- TheMaxwellequationsforthetruncatedfieldsare ble initial purestates. Since fora givenexternalfield, the couplingbetweenfieldandthesystemcanbeincludedwith ∇ ·bΨ′ =0, ∇ ×eΨ′ =−∂b/∂t, (26) R R additionalterms[representedbyH (t)inEq.(2)]to the fm systemHamiltonianH,thestateΨ′(t)ofsystemattimet and iscompletelydeterminedbythevalueofΨ′ ataprevious moment through Eq.(1). If we adiabatically introduce an ∇R·eΨ′ =ρΨ′/ǫ0, c2∇R×bΨ′ =jΨ′/ǫ0+∂eΨ′/∂t. external field, then the ensemble average is changed into (27) anaverageovervariousinitialvaluesΨ′(−∞)ofstateΨ′. Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 7 Denote derivativeofpolarization,andthesourceofradiationfield istimederivativeofcurrentdensity. ξ(R,t)= W[Ψ′(−∞)]ξΨ′(R,t), (28) Eqs.(13,14,15) have shown that the time derivative XΨ′ relation is correct for the microscopic quantities in a pure state. It is easy to see that the time derivative re- where ξΨ′ is any truncated quantity: ρΨ′ or any Carte- lation is also correct for the macroscopic quantities. For sian component of eΨ′, bΨ′ and jΨ′. W[Ψ′(−∞)] is the the truncated quantity PΨ′(R,t) = ∞ d3rPΨ′(R − probability that the system is initially in state Ψ′(−∞). r,t)f(r) and the macroscopic polarizRa−ti∞on P(R,t) = W[Ψ′(−∞)]dependsonlyontheenergyofΨ′(−∞),can W[Ψ′(−∞)]PΨ′(R,t),Eq.(13)implies betakenaseitheracanonicaloragrandcanonicaldistribu- Ψ′ P tion(p678of[31]).Thenξ(R,t)istheusualmacroscopic ∂PΨ′(R,t) ∂P (R,t) observable[32]. jΨ′(R,t)= α andj (R,t)= α . Because Eqs.(26,27) are linear, we can average the α ∂t α ∂t (31) fieldsandsourcesoverallpossibleinitialpurestatesofthe Sometimes,thesecondequationin(31)istakenasaredef- system. Then we obtain the macroscopic Maxwell equa- inition of polarization[35,38]. Since Eqs.(29,30) have the tions: samestructureasEqs.(4,5),themacroscopicradiationfield ∇·B=0, ∇×E=−∂B/∂t, (29) isdeterminedby∂j (R,t)/∂t. α and 4.3 Current density as the response of system to an external field In Sec.4.1, we have seen that (1)if ∇·E=ρ/ǫ0, c2∇×B=j/ǫ0+∂E/∂t. (30) we average the motion of particles over the microscopic time scale v−1k−1, the averaged charge and currentden- 0 HereweusedthefamiliarsymbolsEandBtodenotethe sitystilloscillateinfrequencyk0v;(ii)ifweaveragefields ensembleaverageofeΨ′ andbΨ′.TheargumentsofE,B, andsourcesoverlongertimescale(e.g.severalperiodsof jandρare(R,t),∇representstheoperatorrespecttoR. externalfield), the scattering phenomenaare smeared[27, Themacroscopicsources(ρandj)andfieldsdependonthe 1].Thereforewe shouldnottake temporalcoarse-grained intensiveparametersofachosenensemble. average even for describing the electromagneticphenom- In view of facts that (i) the microscopic Eqs.(4,5) are enainamixedstateofamacroscopicsystem. linear; and (ii) both the ensemble average and truncation On the other hand, the induced charge density ρ and (25)arelinearmapsofthemicroscopicfieldsandsources, the current density j are also the macroscopic responses toobtainEqs.(29,30),wecanactuallyfirsttaketheensem- ofthesystemto anexternalfield.Thereforeboththepro- bleaverageoverthemicroscopicquantities,andthentrun- cedureinSec.4.1andthetimederivativerelationrequires catetheensembleaveragedquantities. that temporal coarse graining should not be taken in the The derivation suggested in this section differs from macroscopic charge density and current density either as previousones[21,22,23,35]intwoaspects:(i)todescribe thesourcesoffieldsorastheresponsestoexternalfields. the electromagnetic phenomena in macroscopic media, The microscopic response method (MRM) used this temporal coarse graining is unnecessary[27]. Only a spa- factasthestartingpointtocalculateconductivityandHall tial coarse-grainedand ensemble average are needed; (ii) mobility[18,32,19].Theentropyproductionisreflectedin Because for a given external field, the interaction of the the existence of a steady state of the system, which is in system and field can be written with additional terms good contact with a heat and material bath. Because the in the Hamiltonian of system[37]. Then for each wave system is in a good thermal and chemical contact with functionΨ′ which satisfies Eq.(1), one may introducethe a bath in an external field, after a short transient period, microscopicresponsejΨ′ forthatstate.Thustheensemble the system will eventually reach a steady state which os- average Eq.(28) can be delayed to the final stage[18,32] cillates at the same frequencyas the externalfield. In the ratherthantakingattheoutset[37,21,22,23]. steadystate,theparameterscharacterizingtheensembledo SinceEqs.(4,5)havethesamestructureasEqs.(29,30), notchange:theevolvedorabsorbedenergyaretransferred toobtaintheradiationfieldsproducedbyamixedstate,we to or taken fromthe bath. For a classical chargedoscilla- onlyneedtoreplace∂jΨ′(x′,t′)/∂t′with∂j(x′,t′)/∂t′. tor undergoingforced oscillation, it is well-known that if 4.2 Polarization, current density and the source the inputenergyis completelydissipated, the system will ofradiationfield Foragroupofchargedparticlesobey- eventually reach a steady state. With perturbation theory, ingCM, the induceddipolemomentisdeterminedbythe one can show that a solid in good thermal contact with a displacement of charges. The current density is propor- bathwillreachasteadystateinanexternalfield[39,33]. tional to the velocities of charges. The radiation field is Temporal coarse graining is a key step in the ki- causedbytheaccelerationsofcharges.We willshowthat netic descriptions of the irreversibility[31,37]. For the for a group of charged particles obeying QM, there exist processes caused by mechanical perturbations, temporal similar relations among polarization, current density and coarse grained average can be avoided. Faber[40] and the source of radiation field: the current density is time Mott[41]conjecturedanexpressionfortheacconductivity Copyrightlinewillbeprovidedbythepublisher 8 Firstauthoretal.:Shorttitle for strong scattering based upon assumptions: (i) in the [2]W.Heitler,TheQuantumTheoryofRadiation,Thirdedition, Kramers-Heisenberg dispersion relation for Raman scat- ClarendonPress,Oxford(1954). tering, put the final state and initial state the same; (ii) [3]V.B.Berestetskii,L.P.PitaevskiiandE.M.Lifshitz,Quan- requirethezerofrequencylimitconsistentwiththeGreen- tumElectrodynamics,2ndedition,Butterworth-Heinemann, wood’s dc conductivity formula[42], this was realized by Oxford(1982). takinglongtimelimit(i.e.temporalcoarsegraining)inthe [4]C.Cohen-Tannoudji,J.Dupont-RocandG.Grynberg,Pho- contractedKramers-Heisenbergrelation.Ifthesecondstep tonsandAtoms,JohnWiley,NewYork,(1997). [5]C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, wasnotused,thefirststepwouldendupwiththeconduc- Atoms-PhotonInteractions,JohnWiley,NewYork,(1998). tivity formula (expressed by the single electronic states) [6]D.P.Craig,T.Thirunamachandran,Acc.Chem.Res.19,10- derivedbytheMRMinwhichnotemporalcoarsegraining 16(1986);MolecularQuantumElectrodynamics,Academic is taken[18,19,32,39]. For crystalline metals, such a for- Press,London(1998). mulawas written downwithoutderivation,cf. Eq.(13.37) [7]A. Salam, Molecular Quantum Electrodynamics: Long- of[43]. RangeIntermolecularInteractions,JohnWiley(2010). [8]C.R.StroudJr.andE.T.Jaynes,Phys.Rev.A1,106(1970). 5 Summary According to the semi-classical radia- [9]M.D.CrispandE.T.Jaynes,Phys.Rev.179,1253(1969). tiontheory,theradiationfieldsaredeterminedbythetime [10]P.W.Milonni,PhysicsReports25,1(1976). derivativeofthecurrentdensity.Forapurestateofamany- [11]A.I. Akhiezer and N.F. Shul’ga, Physics Reports 234, 297 body system, a strict current density expression has been (1993). obtained from the microscopic response method. Thus [12]E.T.JaynesandF.W.Cummings,Proc.IEEE51,89(1963). wehaveestablishedmicroscopicMaxwellequationsfora [13]R.K.Nesbet,Phys.Rev.Lett.27,553(1971). pure state. For a charged quantal particle, three radiation [14]L.I.Schiff,QuantumMechanics,3rdedition,McGraw-Hill, fieldsinvolvevectorpotentialonly.Thisisanewexample NewYork(1968). demonstrating the observability of vector potential. Five [15]S.-Y.Lee,J.Chem.Phys.76,3064(1982). radiationfieldsareperpendicularthecanonicalmomentum [16]R.K.Nesbet,Phys.Rev.A4,259(1971). [17]B. Melig and M. Wilkinson, J. Phys. Condens. Matter 9, oftheparticle.Inamany-bodysystem,oneofitsradiation fieldsisperpendiculartoA(x ,t)×[∇×(∇ Ψ′)],which 3277(1997). j j [18]M.-L. Zhang and D. A. Drabold, Phys. Rev. Lett. 105, doesnotexistforasinglechargedparticle.Wepredictthat 186602(2010). thisformofradiationcanbedetected. [19]M.-L.ZhangandD.A.Drabold,Phys.Stat.Sol.B248,2015 We have extended Russakoff-Robinson’s ansatz to a (2011). group of charged particles obeying QM to derive macro- [20]H.A.Lorentz,Thetheoryofelectrons,G.E.Stechert,New scopic Maxwell equations. Only the spatial coarse grain- York(1923). ing is relevant. The charge density and current density [21]P.MazurandB.R.A.Nijboer,Physica19,971(1953). as sources or responses is well-defined for a pure state. [22]K.Schram,Physica26,1080(1960). Everymacroscopicquantitycanbeobtainedfromthecor- [23]S.R.DeGrootandJ.Vlieger,Physica31,254(1965). responding microscopic quantity by taking spatial coarse [24]G.Russakoff,Am.J.Phys.38,1188(1970). grainingandensembleaverage,cf.Eqs.(25,28).Temporal [25]F.N.H.Robinson,Physica54,329(1971). coarse graining is inadequate for the macroscopic fields, [26]F. N. H. Robinson, Macroscopic Electromagnetism, Perga- sources and the responses of system to field. The consis- monPress,NewYork(1973). tency among the induced displacement, the current and [27]J. D.Jackson, Classical Electrodynamics, 2nd edition, Wi- the acceleration requires that one should not take tem- ley,NewYork(1975). poral coarse graining in the current density (transport [28]W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Second Edition, Addison-Wesley, London coefficients). This agrees with the microscopic response (1962). method[18,32,33,19].Theentropyproductionisreflected [29]L. D. Landau and E.M. Lifshitz, The Classical Theory of bythe existenceof a steady state of the system in a good Fields,Butterworth-Heinmann,Oxford(1975). thermalconnectionwith a bath. If temporalcoarse grain- [30]M.P.Davison,AnnalesFondationLouisdeBroglie30,259 ing is taken in the transport coefficients obtained by the (2005). microscopic response method, one can recover the corre- [31]C.M.VanVliet,EquilibrimandNon-equilibriumStatistical spondingresultsobtainedbythekineticapproaches. Mechanics,WorldScientific,Singapore(2008). [32]M.-L. Zhang and D. A. Drabold, Phys. Rev. E.83, 012103 Acknowledgements Thisworkissupported bytheArmy (2011). ResearchLaboratoryandArmyResearchOfficeunderGrantNo. [33]M.-L.ZhangandD.A.Drabold,J.Phys.:CondensedMat- W911NF1110358andtheNSFunderGrantDMR09-03225. ter,23,085801(2011). [34]M.-L.ZhangandD.A.Drabold,Eur.Phys.J.B77,7(2010). References [35]L. P. Pitaevskii and E.M. Lifshitz, Physical Kinetics, [1]L. D. Landau, E. M. Lifshitz and L. P. Pitaevski˘ı, Eletro- Butterworth-Heinemann,Oxford(1981). dynamics of Continuous Media, 2nd edition, Butterworth [36]R. C. Tolman, The Principles of Statistical Mechanics, HeinemannLtd,Oxford(1984). DoverPublications,Inc.NewYork(1979). Copyrightlinewillbeprovidedbythepublisher pssheaderwillbeprovidedbythepublisher 9 [37]R.Kubo,M.TodaandN.Hashitsume,StatistialPhysicsII, 2ndedition,Springer-Verlag,Berlin(1991). [38]A.Aldea,J.Phys.C:SolidStatePhys.5,1649(1972). [39]M.-L.Zhang and D. A. Drabold, Phys. Rev. B 81, 085210 (2010). [40]T.E. Faber,inOptical Propertiesand ElectronicStructure of Metals and Alloys, edited by F. Abele`s, p. 259, North- HollandPublishingCompany,Amsterdam(1966). [41]N.F.Mott,AdvancesinPhysics16,49(1967). [42]D.A.Greenwood,Proc.Phys.Soc.(London)71,585(1958). [43]N.W.AshcroftandN.D.Mermin,SolidStatePhysics,Saun- dersCollegePublishing,FortWorth(1976). Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like