loading

Logout succeed

Logout succeed. See you again!

ebook img

Proving Differential Privacy via Probabilistic Couplings PDF

file size0.41 MB

Preview Proving Differential Privacy via Probabilistic Couplings

Proving Differential Privacy via Probabilistic Couplings GillesBarthe(cid:63) MarcoGaboardi‡ BenjaminGrégoire$ JustinHsu# Pierre-YvesStrub(cid:63) (cid:63)IMDEASoftware ‡UniversityatBuffalo,SUNY $Inria #UniversityofPennsylvania Abstract ever,thereareseveralimportantexampleswhoseprivacyproofsgo 6 beyondthesetools,forinstance: Overthelastdecade,differentialprivacyhasachievedwidespread 1 adoptionwithintheprivacycommunity.Moreover,ithasattracted • TheAboveThresholdalgorithm,whichtakesalistofnumerical 0 significantattentionfromtheverificationcommunity,resultingin queries as input and outputs the first query whose answer 2 severalsuccessfultoolsforformallyprovingdifferentialprivacy. is above a certain threshold. Above Threshold is the critical n Althoughtheirtechnicalapproachesvarygreatly,allexistingtools componentoftheSparseVectortechnique.(See,e.g.,Dwork u relyonreasoningprinciplesderivedfromthecompositiontheorem andRoth[12].) J ofdifferentialprivacy.Whilethissufficestoverifymostcommon • TheReport-noisy-maxalgorithm,whichtakesalistofnumerical privatealgorithms,thereareseveralimportantalgorithmswhose 9 queriesasinputandprivatelyselectsthequerywiththehighest privacyanalysisdoesnotrelysolelyonthecompositiontheorem. 1 answer.(See,e.g.,DworkandRoth[12].) Their proofs are significantly more complex, and are currently beyondthereachofverificationtools. • TheExponentialmechanism[27],whichprivatelyreturnsthe ] O Inthispaper,wedevelopcompositionalmethodsforformally element of a (possibly non-numeric) range with the highest verifyingdifferentialprivacyforalgorithmswhoseanalysisgoes score; this algorithm can be implemented as a variant of the L beyondthecompositiontheorem.Ourmethodsarebasedondeep Report-noisy-maxalgorithmwithadifferentnoisedistribution. s. connectionsbetweendifferentialprivacyandprobabilisticcouplings, Unfortunately,existingpen-and-paperproofsofthesealgorithms c an established mathematical tool for reasoning about stochastic useadhocmanipulationsofprobabilities,andasaconsequenceare [ processes.Evenwhenthecompositiontheoremisnothelpful,we difficulttounderstandanderror-prone. canoftenproveprivacybyacouplingargument. 3 Thisraisesanaturalquestion:canwedevelopcompositional Wedemonstrateourmethodsontwoalgorithms:theExponential v proofmethodsforverifyingdifferentialprivacyofthesealgorithms, mechanismandtheAboveThreshold algorithm,thecriticalcom- 7 eventhoughtheirproofsappearnon-compositional?Surprisingly, ponent of the famous Sparse Vector algorithm. We verify these 4 examplesinarelationalprogramlogicapRHL+,whichcancon- theanswerisyes.Ourmethodbuildsontwokeyinsights. 0 structapproximatecouplings.ThislogicextendstheexistingapRHL 1. A connection between probabilistic liftings and probabilistic 5 logicwithmoregeneralrulesfortheLaplacemechanismandthe couplings[6]. 0 one-sidedLaplacemechanism,andnewstructuralrulesenabling . 2. A connection between differential privacy and approximate 1 pointwisereasoningaboutprivacy;alltherulesareinspiredbythe liftings[2,4],ageneralizationofprobabilisticliftingsusedin 0 connectionwithcoupling.Whileourpaperispresentedfromafor- probabilisticprocessalgebra[21]. 6 malverificationperspective,webelievethatitsmaininsightisof 1 independentinterestforthedifferentialprivacycommunity. Probabilisticliftingsandcouplings : v CategoriesandSubjectDescriptors F.3.1[SpecifyingandVerify- Relationliftingisawell-studiedconstructioninmathematicsand i ingandReasoningaboutPrograms] computerscience.Abstractly,relationliftingtransformsrelations X R⊆A×BintorelationsR(cid:93) ⊆TA×TB,whereT isafunctor r GeneralTerms Differentialprivacy,probabilisticcouplings oversets[1].Relationliftingsatisfiesatypeofcomposition,soitis a anaturalfoundationforcompositionalproofmethods. 1. Introduction Relation lifting has historically been an important tool for analyzingofprobabilisticsystems.Forexample,probabilisticlifting Differentialprivacyisarigorousdefinitionofstatisticalprivacypro- specializesthenotionofrelationliftingfortheprobabilitymonad, posedbyDwork,McSherry,NissimandSmith[14],andconsidered and appears in standard definitions of probabilistic bisimulation. tobethegoldstandardforprivacy-preservingcomputations.Most Overthelast25years,researchershavedevelopedawidevarietyof differentiallyprivatecomputationsarebuiltfromtwofundamental toolsforreasoningaboutprobabilisticliftings,exploredapplications tools:privateprimitivesandcompositiontheorems(see§2).How- innumerousareasincludingsecurityandbiology,anduncovered deepconnectionswiththeKantorovichmetricandthetheoryof optimaltransport(forasurvey,seeDengandDu[11]). Whileresearchhastraditionallyconsidersprobabilisticliftings Permissiontomakedigitalorhardcopiesofpartorallofthisworkforpersonalorclassroomuseisgrantedwithoutfee providedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeand forpartialequivalencerelations,recentworksinvestigateliftingsfor thefullcitationonthefirstpage.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbehonored. moregeneralrelations.Applicationsincludeformalizingreduction- Abstractingwithcreditispermitted.Tocopyotherwise,torepublish,topostonservers,ortoredistributetolists,contact theOwner/Author(s)[email protected].,ACM,Inc.,fax+1(212) basedcryptographicproofs[3]andmodelingstochasticdominance 869-0481. andconvergenceofprobabilisticprocesses[6].Seekingtoexplain LICS’16 July5–8,2016,NewYork,NewYork,USA Copyright(cid:13)c 2016heldbyowner/author(s).PublicationrightslicensedtoACM. thepowerofliftings,Bartheetal.[6]establishatightconnection ACM978-1-4503-4391-6/16/07...$15.00 DOI:http://dx.doi.org/10.1145/2933575.2934554 betweenprobabilisticliftingsandprobabilisticcouplings,abasic tool in probability theory [24, 30]. Roughly, a probabilistic cou- • The Exponential mechanism. The standard private algorithm plingplacestwodistributionsinthesameprobabilisticspaceby whentheoutputisnon-numeric,thisconstructionistypically exhibitingasuitablewitnessdistributionoverpairs.Notonlydoes takenasaprimitiveinsystemsverifyingprivacy.Incontrast,we thisobservationopennewusesforprobabilisticliftings,itoffersan proveitsprivacywithinourlogic. opportunitytorevisitexistingapplicationsfromafreshperspective. • TheSparseVectoralgorithm.Perhapsthemostfamousexample Differentialprivacyviaapproximateprobabilisticliftings notcoveredbyexistingtechniques,theproofofthismechanism isquiteinvolved;someofitsvariantsarenotprovablyprivate. Relationalprogramlogics[2,4]andrelationalrefinementtypesys- Wealsoprovetheprivacyofitscoresubroutineinourlogic. tems[8]arecurrentlythemostflexibletechniquesforreasoning formallyaboutdifferentiallyprivatecomputations.Theirexpressive Theproofsarebasedoncouplingideas,whichavoidreasoningabout powerstemsfromapproximateprobabilisticliftings,ageneraliza- probabilitiesexplicitly.Asaconsequence,proofsareclean,concise, tionofprobabilisticliftingsinvolvingametricondistributions.In and,webelieve,appealingtoresearchersfromboththedifferential particular,differentialprivacyisaconsequenceofaparticularform privacyandtheformalverificationcommunities. ofapproximatelifting. Wehaveformalizedtheproofsofthesealgorithmsinanexperi- Theseapproacheshavesuccessfullyverifieddifferentialprivacy mentalbranchoftheEasyCryptproofassistantsupportingapproxi- formanyalgorithms.However,theyareunsuccessfulwhenprivacy mateprobabilisticliftings. doesnotfollowfromstandardtoolsandcompositionproperties.In fact,thepresentauthorshadlongbelievedthattheverificationof 2. Differentialprivacy suchexampleswasbeyondthecapabilitiesoflifting-basedmethods. Inthissection,wereviewthebasictoolsofdifferentialprivacy,and Contributions wepresentthealgorithmAboveThreshold,whichformsthemain subroutineoftheSparseVectoralgorithm. Inthispaper,weproposethefirstformalanalysisofdifferentially privatealgorithmswhoseproofdoesnotexclusivelyrelyonthebasic 2.1 Basics toolsofdifferentialprivacy.Wemakethreebroadcontributions. ThebasicdefinitionofdifferentialprivacyisduetoDworketal. Newproofprinciplesforapproximateliftings Wetakeinspira- [14]. tionfromtheconnectionbetweenliftingsandcouplingtodevelop newproofprinciplesforapproximateliftings. Definition 1 (Differential privacy). A probabilistic computation First,weintroduceaprinciplefordecomposingproofsofdiffer- M : A → Distr(B)satisfies((cid:15),δ)-differentialprivacyw.r.t. an entialprivacypointwise,supportingacommonpatternofproving adjacencyrelationΦ⊆A×Aifforeverypairofinputsa,a(cid:48) ∈A privacyseparatelyforeachpossibleoutputvalue.Thisprincipleis suchthataΦa(cid:48)andeverysubsetofoutputsE ⊆B,wehave usedinpen-and-paperproofs,butisnewtoformalapproaches. Pr [y∈E]≤exp((cid:15)) Pr [y∈E]+δ. Second,weprovidenewproofprinciplesfortheLaplacemech- y←Ma y←Ma(cid:48) anism.Informallyspeaking,existingproofprinciplescapturethe Whenδ=0,wesaythatM is(cid:15)-differentiallyprivate. intuition that different inputs can be made to look equal by the Laplacemechanisminexchangeforpayingsomeprivacycost.Our Intuitively,theprobabilisticconditionensuresthatanytwoinputs firstnewproofprinciplefortheLaplacemechanismisdual,and satisfyingtheadjacencyrelationΦresultinsimilardistributions capturestheideathatequalinputscanbemadetolookarbitrarilydif- overoutputs.TherelationΦmodelswhichpairsofdatabasesshould ferentbytheLaplacemechanism,providedthatonepayssufficient be protected, i.e., what data should be nearly indistinguishable. privacy.OursecondnewproofprinciplefortheLaplacemechanism Whileitmaynotbeobviousfromthedefinition,differentialprivacy statesthatifweaddthesamenoiseintworunsoftheLaplacemech- hasanumberoffeaturesthatallowsimpleconstructionofprivate anism,thedistancebetweenthetwovaluesispreservedandthereis algorithmswithstraightforwardproofsofprivacy.Specifically,the noprivacycost.Asfarasweknow,theseproofprinciplesarenew vast majority of differential privacy proofs use two basic tools: tothedifferentialprivacyliterature.Theyarethekeyingredientsto privateprimitivesandcompositiontheorems. provingexamplessuchasSparseVectorusingcompositionalproof methods. Privateprimitives Thesecomponentsformthebuildingblocksof Wealsoproposeapproximateprobabilisticliftingsfortheone- privatealgorithms.ThemostbasicexampleistheLaplacemech- sided Laplace mechanism, which can be used to implement the anism,whichachievesdifferentialprivacyfornumericalcomputa- Exponentialmechanism.Theone-sidedLaplacemechanismnicely tionsbyaddingprobabilisticnoisetotheoutput.Wewillworkwith illustratesthebenefitsofourapproach:althoughitisnotdifferen- thediscreteversionofthismechanismthroughoutthepaper. tiallyprivate,itspropertiescanbeformallycapturedbyapproximate Definition2(Laplacemechanism[14]). Let(cid:15)>0.The(discrete) probabilisticliftings.Thesepropertiescanbecombinedtoshowpri- LaplacemechanismL :Z→SDistr(Z)isdefinedbyL (t)= (cid:15) (cid:15) vacyforalargerprogram. t + ν, where ν ∈ Z is drawn from the Laplace distribution An extended probabilistic relational program logic To demon- Laplace(1/(cid:15)),i.e. withprobabilitiesproportionalto strateourtechniques,weworkwiththerelationalprogramlogic Pr[ν]∝exp(−(cid:15)·|ν|). apRHL[4].ConceivedasaprobabilisticvariantofBenton’srela- tionalHoarelogic[9],apRHLhasbeenusedtoverifydifferential Thelevelofprivacydependsonthesensitivityofthequery. privacyforexamplesusingthestandardcompositiontheorems.Most Definition3(Sensitivity). Letk ∈ N.AfunctionF : A → Zis importantly,thesemanticsofapRHLusesapproximateliftings.We k-sensitivewithrespecttoΦ⊆A×Aif|F(a )−F(a )|≤kfor introducenewproofrulesrepresentingournewproofprinciples, 1 2 everya ,a ∈Asuchthata Φa . andcalltheresultinglogicapRHL+. 1 2 1 2 Thefollowingtheoremshowsthatk-sensitivefunctionscanbe Newprivacyproofs Whiletheextensionsamounttojustahandful madedifferentiallyprivatethroughtheLaplacemechanism[14]. ofrules,theysignificantlyincreasethepowerofapRHL:Weprovide thefirstformalverificationoftwoalgorithmswhoseprivacyproofs Theorem1. AssumethatF :A→Zisk-sensitivewithrespectto usetoolsbeyondthecompositiontheorems. Φ.LetM :A→Distr(Z)betheprobabilisticfunctionthatmaps i←1;r←|Q|+1; Theorem3(see,e.g.,DworkandRoth[12]). Assumingallqueries T ←$ L(cid:15)/2(t); inQare1-sensitive,AboveTis((cid:15),0)-differentiallyprivate. whilei<|Q|do In other words, AboveT is provably (cid:15)-differentially private, S ←$ L(cid:15)/4(evalQ(Q[i],d)); independentofthenumberofqueries.Thisisaremarkablefeature if(T ≤S ∧r=|Q|+1)thenr←i; oftheAboveThresholdalgorithm. i←i+1; returnr 3. Generalizedprobabilisticliftings Figure1. TheAboveThresholdalgorithm To verify advanced algorithms like AboveT, we will leverage thepowerofapproximateprobabilisticliftings.Inanuthsell,our proofswillreplacethesequentialcompositiontheoremofdifferen- atoL (F(a)).ThenM isk·(cid:15)-differentiallyprivatewithrespect (cid:15) tialprivacy—whichwe’veseenisnotenoughtoverifyourtarget toΦ. examples—withthemoregeneralcompositionprincipleofliftings. AnotherprivateprimitiveistheExponentialmechanism,which Thissectionreviewsexistingnotionsof(approximate)probabilis- isthetoolofchoicewhenthedesiredoutputisnon-numeric.While tic liftings and introduces proof principles for establishing their thismechanismisoftentakenasaprimitiveconstruct,wewillsee existence.Mostoftheseproofprinciplesarenew,includingthose in§5howtoverifyitsprivacy. for equality (Proposition 2), differential privacy (Proposition 6), theLaplacemechanism(Propositions8and9),andtheone-sided Compositiontheorems Thesetoolsprovetheprivacyofacombi- Laplacemechanism(Propositions10and11). nationofprivatecomponents,significantlysimplifyingtheprivacy To avoid measure-theoretic issues, we base our technical de- analysis.Themostcommonlyinstance,byfar,isthepowerfulse- velopment on sub-distributions over discrete sets (discrete sub- quentialcompositiontheorem. distributions).Forsimplicity,wewillworkwithdistributionsover Theorem 2 (Sequential composition [13]). Let M : D → theintegerswhenconsideringdistributionsovernumericvalues. Distr(R)bean((cid:15),δ)-privatecomputation,andletM(cid:48) : D → Westartbyreviewingthestandarddefinitionofsub-distributions. R → Distr(R(cid:48)) be an ((cid:15)(cid:48),δ(cid:48))-private computation in the first LetBbeacountableset.Afunctionµ:B →R≥0is argument for any fixed value of the second argument. Then, the (cid:80) • asub-distributionoverBif µ(b)≤1;and function b∈supp(µ) (cid:80) d(cid:55)→bindM(d)M(cid:48)(d) • adistributionoverBif b∈supp(µ)µ(b)=1. is((cid:15)+(cid:15)(cid:48),δ+δ(cid:48))-private. As usual, the support supp(µ) is the subset of B with non-zero weight under µ. Let Distr(B) and SDistr(B) denote the sets Onespecificformofcompositionispost-processing.Informally, of discrete sub-distributions and distributions respectively over thepost-processingtheoremstatesthattheoutputofadifferentially B. Equality of distributions is defined as pointwise equality of privatecomputationcanbetransformedwhileremainingprivate, functions. so long as the transformation does not depend on the private Probabilistic liftings and couplings are defined in terms of a data directly; such a transformation can be thought of as (0,0)- distributionoverproducts,anditsmarginaldistributions.Formally, differentiallyprivate. thefirstandsecondmarginalsofasub-distributionµ∈Distr(B × 1 2.2 AboveThreshold B2) are simply the projections: the sub-distributions π1(µ) ∈ Distr(B )andπ (µ)∈Distr(B )givenby Whilemostprivatealgorithmscanbeanalyzedusingcomposition 1 2 2 (cid:88) (cid:88) theoremsandproofsofprivateprimitives,somealgorithmsrequire π (µ)(b )= µ(b ,b ) π (µ)(b )= µ(b ,b ). 1 1 1 2 2 2 1 2 moreintricateproofs.Togiveanexample,weconsidertheAbove b2∈B2 b1∈B1 Thresholdalgorithm,whichisthecoreoftheSparseVectortech- nique.1 TheSparseVectoralgorithmtakesasinputadatabased, 3.1 Probabilisticcouplingsandliftings alistofnumericalqueriesQ,athresholdt,andanaturalnumber Probabilisticcouplingsandliftingsarestandardtoolsinprobability k, and privately selects the first k queries from Q whose output theory,andsemanticsandverification,respectively.Wepresenttheir ondareapproximatelyabovethethreshold.TheAboveThreshold definitions to highlight their similarities before discussing some algorithmcorrespondstothecasek=1. usefulconsequences. ThecodeofthealgorithmisgiveninFigure1.Inwords,AboveT computesanoisyversionT ofthethresholdt,computesforevery Definition 4 (Coupling). There is a coupling between two sub- queryqinthelistQanoisyversionSofq(d),andreturnstheindex distributionsµ ∈Distr(B )andµ ∈Distr(B )ifthereexists 1 1 2 2 ofthefirstqueryqsuchthatT ≤ S oradefaultvalueifthereis asub-distribution(calledthewitness)µ ∈ Distr(B ×B )s.t. 1 2 nosuchquery.Itiseasytoseethat((cid:15),0)-differentialprivacyof π (µ)=µ andπ (µ)=µ . 1 1 2 2 AboveT directly implies (k·(cid:15),0)-differential privacy of Sparse Probabilisticliftingsareaspecialclassofcouplings. Vector,sincewecansimplyrunAboveTktimesinsequenceand applythesequentialcompositiontheorem. Definition 5 (Lifting). Two sub-distributions µ ∈ Distr(B ) 1 1 If we try applying the sequential composition theorem (with and µ ∈ Distr(B ) are related by the (probabilistic) lifting 2 2 theprivacyoftheLaplacemechanism)toAboveTwecanshow of Ψ ⊆ B × B , written µ Ψ(cid:93)µ , if there exists a coupling 1 2 1 2 (|Q|·(cid:15),0)-differentialprivacywhenallqueriesinQare1-sensitive, µ∈Distr(B ×B )ofµ andµ suchthatsupp(µ)⊆Ψ. 1 2 1 2 where|Q|denotesthelengthofthelistQ.However,asophisticated analysisgivesamorepreciseprivacyguarantee. Probabilisticliftingshavemanyusefulconsequences.Forexam- ple,µ =(cid:93) µ holdsexactlywhenthesub-distributionsµ andµ 1 2 1 2 1Asthisalgorithmwasnotformallyproposedinacanonicalwork,there areequal.Lesstrivially,liftingscanboundtheprobabilityofone existdifferentvariantsofthealgorithm.Somevariantstakeasinputastream eventbytheprobabilityofanotherevent.Thisobservationisuseful ratherthanalistofqueries,and/oroutputtheresultofanoisyquery,rather forformalizingreduction-basedcryptographicproofs. thanitsindex;seethefinalremarkin§6forfurtherdiscussion. Proposition 1 (Barthe et al. [3]). Let E ⊆ B , E ⊆ B , 1. π (µ )=µ andπ (µ )=µ ; 1 1 2 2 1 L 1 2 R 2 µ1 ∈Distr(B1)andµ2 ∈Distr(B2).Define 2. supp(µL)⊆Ψandsupp(µR)⊆Ψ;and Ψ={(x1,x2)∈B1×B2 |x1 ∈E1 ⇒x2 ∈E2}. 3. ∆(cid:15)(µL,µR)≤δ. Ifµ1Ψ(cid:93)µ2,then Itisrelativelyeasytoseethattwosub-distributionsµ1andµ2 arerelatedby=(cid:93)((cid:15),δ)iff∆ (µ ,µ )≤δ.Therefore,aprobabilistic Pr [x ∈E ]≤ Pr [x ∈E ]. (cid:15) 1 2 1 1 2 2 computationM : A → Distr(B)is((cid:15),δ)-differentiallyprivate x1←µ1 x2←µ2 w.r.t. anadjacencyrelationΦiff Onekeyobservationforourapproachisthatthisresultcanalso beusedtoproveequalitybetweendistributionsinapointwisestyle. M(a) =(cid:93)((cid:15),δ) M(a(cid:48)) Proposition2(Equalitybypointwiselifting). for every two adjacent inputs a and a(cid:48) (i.e. such that a Φ a(cid:48)). • Letµ1,µ2 ∈SDistr(B).Foreveryb∈B,define Thisfactformsthebasisofpreviouslifting-basedapproachesfor differentialprivacy[2,4,5,8]. Ψ ={(x ,x )∈B×B | x =b⇒x =b}. b 1 2 1 2 Ausefulpreliminaryfactisthatapproximateliftingsgeneralize Ifµ Ψ(cid:93)µ forallb∈B,thenµ =µ . probabilisticliftings(whichwewillsometimescallexactliftings). 1 b 2 1 2 • Letµ ,µ ∈Distr(B).Foreveryb∈B,define 1 2 Proposition4. Supposewearegivendistributionsµ ∈SDistr(B ) 1 1 Ψb ={(x1,x2)∈B×B | x1 =b⇔x2 =b}. and µ2 ∈ SDistr(B2) and a relation Ψ ⊆ B1 × B2. Then, Ifµ Ψ(cid:93)µ forallb∈B,thenµ =µ . µ1Ψ(cid:93)µ2ifandonlyifµ1Ψ(cid:93)(0,0)µ2. 1 b 2 1 2 Proof. Weprovethefirstitem;theseconditemfollowssimilarly. Proof. Theforwarddirectioniseasy:simplydefineµ =µ tobe First, a simple observation: two distributions µ and µ are L R 1 2 the witness of the exact lift. The reverse direction follows from equal iff µ (b) ≤ µ (b) for every b ∈ B. Indeed, suppose that µ (¯b)(cid:54)=µ1(¯b)forso2me¯b∈B.Then,µ (¯b)<µ (¯b),so the observations that the witnesses µL and µR are necessarily 1 2 1 2 distributions, and that ∆ is the total variation distance (a.k.a. (cid:88) (cid:88) 0 µ1(b)< µ2(b), statisticaldistance)ondistributions,inparticular∆0(µL,µR)=0 iffµ =µ .Toseethislastpoint,∆ (µ ,µ )=0entails b∈B b∈B L R 0 L R contradictingthefactthatµ1andµ2aredistributions: µL(b1,b2)≤µR(b1,b2) (cid:88) (cid:88) µ1(b)= µ2(b)=1. forevery(b1,b2)∈B1×B2.SoµL =µRbyProposition2. b∈B b∈B Thus, in order to show µ = µ , it is sufficient to prove 1 2 Thepreviousresultsforexactliftingsgeneralizesmoothlyto Pr [x=b] ≤ Pr [x=b] for every b ∈ B. These in- x←µ1 x←µ2 approximateliftings.First,wecangeneralizeProposition1. equalitiesfollowfromProposition1. Proposition5(BartheandOlmedo[2]). LetE ⊆B ,E ⊆B , 3.2 Approximateliftings 1 1 2 2 µ ∈Distr(B )andµ ∈Distr(B ).Let 1 1 2 2 Ithaspreviouslybeenshownthatdifferentialprivacyfollowsfrom an approximate version of liftings [4]. Our presentation follows Ψ={(x1,x2)∈B1×B2 |x1 ∈E1 ⇒x2 ∈E2}. subsequent refinements by Barthe and Olmedo [2]. We start by Ifµ Ψ(cid:93)((cid:15),δ)µ ,then defininganotionofdistancebetweensub-distributions. 1 2 Definition6(Bartheetal.[4]). Let(cid:15) ≥ 0.The(cid:15)-DPdivergence Pr [x1 ∈E1]≤exp((cid:15)) Pr [x2 ∈E2]+δ. ∆ (µ ,µ ) between two sub-distributions µ ∈ Distr(B) and x1←µ1 x2←µ2 (cid:15) 1 2 1 µ ∈Distr(B)isdefinedas WecanusethispropositiontogeneralizeProposition2,which 2 providesawaytoprovethattwodistributionsµ andµ areequal— (cid:18) (cid:19) 1 2 sup Pr [x∈E]−exp((cid:15)) Pr [x∈E] equivalently, µ1 =(cid:93) µ2. Generalizing this lifting from exact to E⊆B x←µ1 x←µ2 approximate yields the following pointwise characterization of differentialprivacy,astapletechniqueofpen-and-paperproofs. Thefollowingpropositionrelates(cid:15)-DPdivergencewith((cid:15),δ)- differentialprivacy. Proposition6(Differentialprivacyfrompointwiselifting). Aprob- Proposition 3 (Barthe et al. [4]). A probabilistic computation abilisticcomputationM :A→Distr(B)is((cid:15),δ)-differentially M : A → Distr(B) is ((cid:15),δ)-differentially private w.r.t. an privatew.r.t. anadjacencyrelationΦiffthereexists(δb)b∈B ∈R≥0 adjacencyrelationΦiff suchthat(cid:80) δ ≤δ,andM(a)Ψ(cid:93)((cid:15),δb)M(a(cid:48))foreveryb∈B b∈B b b ∆ (M(a),M(a(cid:48)))≤δ andeverytwoadjacentinputsaanda(cid:48),where (cid:15) foreverytwoadjacentinputsaanda(cid:48)(i.e. suchthataΦa(cid:48)). Ψb ={(x1,x2)∈B×B |x1 =b⇒x2 =b}. WecanuseDP-divergencetodefineanapproximateversionof probabilistic lifting, called ((cid:15),δ)-lifting. We adopt the definition Proof. Firstnotethat∆ (µ ,µ ) ≤ δ iffthereexists(δ ) ∈ (cid:15) 1 2 b b∈B by Barthe and Olmedo [2], which extends to a general class of R≥0 s.t. µ (b) ≤ exp((cid:15))µ (b) + δ for every b ∈ B, and 1 2 b distancescalledf-divergences. (cid:80) δ ≤ δ. So, it is sufficient to show that for every b ∈ B b∈B b Definition7(((cid:15),δ)-lifting). Twosub-distributionsµ ∈Distr(B ) andeverytwoadjacentinputsaanda(cid:48),wehave 1 1 and µ ∈ Distr(B ) are related by the ((cid:15),δ)-lifting of Ψ ⊆ 2 2 Pr [x=b]≤exp((cid:15)) Pr [x=b]+δ B1 × B2, written µ1Ψ(cid:93)((cid:15),δ)µ2, if there exist two witness sub- x←M(a) x←M(a(cid:48)) b distributionsµ ∈Distr(B ×B )andµ ∈Distr(B ×B ) L 1 2 R 1 2 (cid:80) with δ ≤δ.ThisfollowsfromProposition5. suchthat b∈B b 3.3 ProbabilisticliftingsfortheLaplacemechanism whereνnon-negativeintegerdrawnfromtheLaplacedistribution Laplace+(1/(cid:15)),i.e. withprobabilitiesproportionalto Sofar,wehaveseengeneralpropertiesaboutapproximateliftings and differential privacy. Now, we turn to more specific liftings Pr[ν]∝exp(−(cid:15)·ν). relevant to typical distributions in differential privacy. In terms Whilethismechanismisnot(cid:15)-differentiallyprivateforany(cid:15),we of approximate liftings, we can state the privacy of the Laplace canstillconsiderprobabilisticliftingsforthesamples.Wehavethe mechanism(Theorem1)inthefollowingform. followingtworesults,analogoustoPropositions8and9. Proposition7. Letv ,v ∈Zandk∈Ns.t.|v −v |≤k.Then 1 2 1 2 Proposition10. Letv ,v ,k∈Zsuchthatk≥v −v .Then L (v ) =(cid:93)(k·(cid:15),0) L (v ). 1 2 2 1 (cid:15) 1 (cid:15) 2 Los(v )Ψ(cid:93)((k+v1−v2)·(cid:15),0)Los(v ), Proposition7issufficientlygeneraltocapturemostexamples (cid:15) 1 (cid:15) 2 fromtheliterature,butnotfortheexamplesofthispaper;informally, where applyingProposition7onlyallowsustoproveprivacyusingthe Ψ={(x ,x )∈Z×Z|x +k=x }. 1 2 1 2 standardcompositiontheorems.Toseehowwemightgeneralizethe principle,notethatprivacyfrompointwiseliftings(Proposition6) Proof. Itsufficestoconsiderthecasewherev =v =0:Los(v) 1 2 (cid:15) involvesliftingsofanasymmetricrelation,ratherthanequality.This isthesamedistributionassamplingfromLos(0)andaddingv,so (cid:15) suggeststhatitcouldbeprofitabletoconsiderasymmetricliftings. thedesiredconclusionfollowsfrom Indeed,weproposethefollowinggeneralizationofProposition7. Los(0)Ψ(cid:48)(cid:93)((k+v1−v2)·(cid:15),0)Los(0), Proposition8. Letv ,v ,k∈Z.Then (cid:15) (cid:15) 1 2 where L(cid:15)(v1)Ψ(cid:93)(|k+v1−v2|·(cid:15),0)L(cid:15)(v2), Ψ(cid:48) ={(x ,x )∈Z×Z|(x +v )+k=(x +v )} 1 2 1 1 2 2 where ={(x ,x )∈Z×Z|x +(k+v −v )=x }, 1 2 1 1 2 2 Ψ={(x ,x )∈Z×Z|x +k=x }. 1 2 1 2 whichfollowsfromthev =v =0casesincek+v −v ≥0 1 2 1 2 byassumption. Proof. Itsufficestoproveµ1Ψ(cid:93)(|k+v1−v2|·(cid:15),0)µ2,whereµ1isthe So,weassumev1 =v2 =0andk≥0.Wewilldirectlydefine distributionofv1+η1+kandµ2isthedistributionofv2+η2,with thetwowitnessesoftheapproximatelifting.Let η ,η drawsfromthediscreteLaplacedistributionLaplace(1/(cid:15)). 1 2 G(v)= Pr [x=v]. BythedefinitionoftheLaplacemechanism,µ =L (v +k)and µ =L (v ).Now,wecanconcludebyPropo1sition(cid:15)7. 1 x←Lo(cid:15)s(0) 2 (cid:15) 2 Definetheleftwitnessµ onitssupportby L Proposition 8 has several useful consequences. For instance, µL(i−k,i)=G(i) when|v −v |≤kwehaveL (v )Ψ(cid:93)(2k·(cid:15),0)L (v )with 1 2 (cid:15) 1 (cid:15) 2 fori≥k,andtherightwitnessµ onitssupportby R Ψ={(x ,x )∈Z×Z|x +k=x }, (1) 1 2 1 2 µ (j,j+k)=G(j) R followingfromProposition8andthetriangleinequality for j ≥ −k. Evidently the marginals are correct—π (µ ) = 1 L |v1−v2|≤k⇒|k+(v1−v2)|≤k+k=2k. π2(µR)=Lo(cid:15)s(0)—soitremainstocheckthat∆k(cid:15)(µL,µR)≤0: (cid:18) (cid:19) Informally,thisinstanceofProposition8showsthatby“paying” max Pr [x∈E]−exp(k(cid:15)) Pr [x∈E] ≤0. privacycost(cid:15),wecanensurethatthesamplesareacertaindistance E⊆Z×Z x←µL x←µR apart.ThisstandsincontrasttoProposition7,whichensuresthat Itsufficestoprovethispointwiseovertheunionofthesupportsof thesamplesareequal. µ andµ :foreachj ≥−k,weneed L R Anotherusefulconsequenceisthataddingidenticalnoisetoboth v andv incursnoprivacycost,andwecanassumethedifference Pr [x=(j,j+k)]−exp(k(cid:15)) Pr [x=(j,j+k)]≤0. b1etween2thesamplesisthedifferencebetweenv andv . x←µL x←µR 1 2 Thisisevidentforj <0,whenthefirsttermiszeroandthesecond Proposition9. Letv1,v2 ∈Z.ThenL(cid:15)(v1)Ψ(cid:93)(0,0)L(cid:15)(v2),where termisnon-negative.Forj ≥0weneedtoshow Ψ={(x1,x2)∈Z×Z|x1−x2 =v1−v2}. G(j)−exp(k(cid:15))G(j+k)≤0, whichfollowsbydirectcalculation(or,theprivacyofthestandard Proof. ImmediatebyProposition8withk=v −v . 2 1 Laplacedistribution). 3.4 Probabilisticliftingsforone-sidedLaplacemechanism Proposition 11. Let v ,v ∈ Z. Then Los(v ) Ψ(cid:93)(0,0) Los(v ), 1 2 (cid:15) 1 (cid:15) 2 where WhiletheLaplacemechanismisalreadysufficienttoimplement a wide variety of private algorithms, a few algorithms use other Ψ={(x ,x )∈Z×Z|x −x =v −v }. 1 2 1 2 1 2 distributions. In particular, the Exponential mechanism can be implementedintermsoftheone-sidedLaplacemechanism.This Proof. Itsufficestoprove algorithmisthesameastheLaplacemechanismexceptnoiseis drawn from the one-sided Laplace distribution (also called the Lo(cid:15)s(v1)Ψ(cid:48)(cid:93)(0,0)Lo(cid:15)s(v2), exponentialdistribution),whichoutputsnon-negativeintegers. where Definition 8 (One-sided Laplace mechanism). Let (cid:15) > 0. The Ψ(cid:48) ={(x ,x )∈Z×Z|x −v =x −v }. discreteone-sidedLaplacemechanismLos : Z → SDistr(Z)is 1 2 1 1 2 2 (cid:15) definedby Thisisequivalentto Los(t)=t+ν, Los(v −v ) =(cid:93)(0,0) Los(v −v ), (cid:15) (cid:15) 1 1 (cid:15) 2 2 whichisobviousbyProposition4sincebothsidesarethesame is valid iff for every two memories m and m , such that 1 2 distribution. m [[Φ]]m ,wehave 1 2 ([[c ]] )[[Ψ]](cid:93)((cid:15),δ)([[c ]] ). 4. Formalizationinaprogramlogic 1 m1 2 m2 InthissectionwepresentanewprogramlogiccalledapRHL+for Proof system Figure 2 presents the main rules from apRHL reasoningaboutdifferentialprivacyofprogramswritteninacore excludingthesamplingrule,whichwegeneralizeinapRHL+.We programminglanguagewithsamplingsfromtheLaplacemechanism brieflycommentonsomeoftheserules. andtheone-sidedLaplaceMechanism.OurprogramlogicapRHL+ Therule[SEQ]forsequentialcompositiongeneralizesthese- extendsapRHL,arelationalHoarelogicthathasbeenusedtoverify quentialcompositiontheoremofdifferentialprivacy,whichintu- manyexamplesofdifferentiallyprivatealgorithms[4].Themain itivelycorrespondstothecasewherethepostconditionofthecom- resultofthissectionisaproofofsoundnessofthelogic(Theorem4). posedcommandsisequality.ThisgeneralizationallowsapRHLto provedifferentialprivacyusingthecouplingcompositionprinciple Programs Weconsiderasimpleimperativelanguagewithrandom whenthestandardcompositiontheoremisinsufficient. sampling.Thesetofcommandsisdefinedinductively: Therule[WHILE]forwhileloopscanbeseenasageneralization ofak-foldcompositiontheoremfordifferentialprivacy.Again,it C ::= skip noop allowstoconsiderarbitrarypostconditions,whereasthecomposition | C; C sequencing theoremwouldcorrespondtothecasewherethepostconditionof | X ←E deterministicassignment theloopisequality(inconjunctionwithnegationoftheguards).We | X ←$ L(cid:15)(E) Laplacemechanism oftenusetwosimplerinstancesoftherule.Thefirstonecorresponds | X ←$ Lo(cid:15)s(E) one-sidedLaplacemechanism tothecasewherethevaluesof(cid:15) andδ areindependentofk,i.e. | ifE thenCelseC conditional k k (cid:15) =(cid:15)andδ =δ,yieldingaboundof(cid:104)n·(cid:15),n·δ(cid:105).Thesecond | whileE doC whileloop k k onecorrespondstothecasewhereasingleiterationcarriesaprivacy whereX isasetofvariablesandE isasetofexpressions.Vari- cost,asshownintherule[WHILEEXT]inFigure4.Thisweakerrule ablesandexpressionsaretyped,andrangeoverboolean,integers, isinfactsufficientforprovingprivacyofseveralofourexamples, databases,queries,andlists. includingtheAboveThresholdalgorithm(butnottheSparseVector Thesemanticsofprogramsisstandard[4,22].Wefirstdefine algorithm,whichalsousestheaforementionedinstanceofthewhile thesetMemofmemoriestocontainallwell-typedfunctionsfrom rule),theExponentialmechanism,andReport-noisy-max. variablestovalues.Expressionsanddistributionexpressionsmap Figure3collectsthenewrulesinapRHL+,whichareallderived memoriestovaluesanddistributionsovervalues,respectively:an from the new proof principles we saw in the previous section. expressioneoftypeT isinterpretedasafunction[[e]]:Mem→T, The first rule [FORALL-EQ] allows proving differential privacy whereas a distribution expression g is interpreted as a function viapointwiseprivacy;thisrulereflectsProposition6. [[g]] : Mem → SDistr(Z).Finally,commandsareinterpretedas Thenextpairofrules,[LAPGEN]and[LAPNULL],reflectthe functionsfrommemoriestosub-distributionsovermemories,i.e. liftingsofthedistributionsoftheLaplacemechanismpresentedin theinterpretationofcisafunction[[c]]:Mem→Distr(Mem).We Propositions8and9respectively.Notethatweneedaside-condition refertoBartheetal.[4],Kozen[22]foranaccountofthesemantics. onthefreevariablesin[LAPNULL]—otherwise,thesamplemay changee1ande2.Thefollowingpairofrules,[ONELAPGEN]and Assertionsandjudgments Assertionsinthelogicarefirst-order [ONELAPNULL],givesimilar liftingsforthe one-sidedLaplace formulaeovergeneralizedexpressions.Thelatterareexpressions mechanismfollowingPropositions10and11respectively. builtfromtaggedvariablesx(cid:104)1(cid:105)andx(cid:104)2(cid:105),wherethetagisusedto Finally,thelastpairofrulesallowsreasoningaboutaconditional determinewhethertheinterpretationofthevariableistakeninthe whiletreatingtheothercommandabstractly.Theseso-calledone- firstmemoryorinthesecondmemory.Forinstance,x(cid:104)1(cid:105)=x(cid:104)2(cid:105)+1 sidedruleswerealreadypresentinthelogicpRHL,apredecessor istheassertionwhichstatesthattheinterpretationofthevariablex ofapRHLbasedonexactliftings[3],buttheywereneverneeded inthefirstmemoryisequaltotheinterpretationofthevariablexin in apRHL. In apRHL+ the one-sided rules are quite useful, in thesecondmemoryplus1.Moreformally,assertionsareinterpreted conjunctionwithourrichersamplingrules,forreasoningabouttwo aspredicatesoverpairsofmemories.Welet[[Φ]]denotethesetof conditionalsthatmaytakedifferentbranches. memories(m ,m )thatsatisfyΦ.Theinterpretationisstandard 1 2 (besidestheuseoftaggedvariables)andisomitted.Byabuseof Soundness Thesoundnessofthenewrulesimmediatelyfollows notation,wewritee(cid:104)1(cid:105)ore(cid:104)2(cid:105),whereeisaprogramexpression,to fromtheresultsoftheprevioussection,whilesoundnessforthe denotethegeneralizedexpressionbuiltaccordingtoe,butinwhich apRHLruleswasestablishedpreviously[4]. allvariablesaretaggedwitha(cid:104)1(cid:105)or(cid:104)2(cid:105),respectively. JudgmentsinbothapRHLandapRHL+areoftheform Theorem4. AlljudgmentsderivableinapRHL+arevalid. (cid:96)c ∼ c :Φ=⇒Ψ 1 (cid:104)(cid:15),δ(cid:105) 2 5. Exponentialmechanism wherec andc arestatements,thepreconditionΦandpostcon- 1 2 dition Ψ are relational assertions, and (cid:15) and δ are non-negative In this section, we provide a formal proof of the Exponential reals.2Informally,ajudgmentoftheaboveformisvalidifthetwo mechanismofMcSherryandTalwar[27].Whilethereisexisting distributionsproducedbytheexecutionsofc andc onanytwo work that proves differential privacy of this mechanism [4], the 1 2 initialmemoriessatisfyingthepreconditionΦarerelatedbythe proofsoperateontherawdenotationalsemantics.Incontrast,we ((cid:15),δ)-liftingofthepostconditionΨ.Formally,thejudgment workentirelywithinourprogramlogic. TheExponentialmechanismisdesignedtoprivatelycompute (cid:96)c1 ∼(cid:104)(cid:15),δ(cid:105) c2 :Φ=⇒Ψ the best response from a set R of possible response, according to some integer-valued quality score function qscore that takes 2TheoriginalapRHLrulesarebasedonamultiplicativeprivacybudget.We as input an element in R and a database d. Given a database d adapttherulestoanadditiveprivacyparameterforconsistencywiththerest and a k-sensitive quality score function qscore, the Exponential ofthearticleandthebroaderprivacyliterature. mechanismExpM(d,qscore)outputsanelementroftherangeR (cid:96)x1 ←e1 ∼(cid:104)0,0(cid:105) x2 ←e2 :Ψ{e1(cid:104)1(cid:105),e2(cid:104)2(cid:105)/x1(cid:104)1(cid:105),x2(cid:104)2(cid:105)}=⇒Ψ[ASSN] (cid:96)c ∼ c :Φ∧b (cid:104)1(cid:105)=⇒Ψ (cid:96)d ∼ d :Φ∧¬b (cid:104)1(cid:105)=⇒Ψ 1 (cid:104)(cid:15),δ(cid:105) 2 1 1 (cid:104)(cid:15),δ(cid:105) 2 1 [COND] (cid:96)ifb thenc elsed ∼ ifb thenc elsed :Φ∧b (cid:104)1(cid:105)=b (cid:104)2(cid:105)=⇒Ψ 1 1 1 (cid:104)(cid:15),δ(cid:105) 2 2 2 1 2 (cid:96)c ∼ c :Θ∧b (cid:104)1(cid:105)∧b (cid:104)2(cid:105)∧k=e(cid:104)1(cid:105)∧e(cid:104)1(cid:105)≤n=⇒Θ∧b (cid:104)1(cid:105)=b (cid:104)2(cid:105)∧k<e(cid:104)1(cid:105) Θ∧e(cid:104)1(cid:105)≤0⇒¬b (cid:104)1(cid:105) 1 (cid:104)(cid:15)k,δk(cid:105) 2 1 2 1 2 1 [WHILE] (cid:96)whileb doc ∼ whileb doc :Θ∧b (cid:104)1(cid:105)=b (cid:104)2(cid:105)∧e(cid:104)1(cid:105)≤n=⇒Θ∧¬b (cid:104)1(cid:105)∧¬b (cid:104)2(cid:105) 1 1 (cid:104)(cid:80)nk=1(cid:15)k,(cid:80)nk=1δk(cid:105) 2 2 1 2 1 2 (cid:96)c1 ∼(cid:104)(cid:15),δ(cid:105) c2 :Φ=⇒Ψ(cid:48) (cid:96)c(cid:48)1 ∼(cid:104)(cid:15)(cid:48),δ(cid:48)(cid:105) c(cid:48)2 :Ψ(cid:48) =⇒Ψ [SEQ] (cid:96)c1;c(cid:48)1 ∼(cid:104)(cid:15)+(cid:15)(cid:48),δ+δ(cid:48)(cid:105) c2;c(cid:48)2 :Φ=⇒Ψ (cid:96)c1 ∼(cid:104)(cid:15)(cid:48),δ(cid:48)(cid:105) c2 :Φ(cid:48) =⇒Ψ(cid:48) Φ⇒Φ(cid:48) Ψ(cid:48) ⇒Ψ (cid:15)(cid:48) ≤(cid:15) δ(cid:48) ≤δ [CONSEQ] (cid:96)c ∼ c :Φ=⇒Ψ 1 (cid:104)(cid:15),δ(cid:105) 2 Figure2. ProofrulesfromapRHL (cid:80) ∀i.(cid:96)c ∼ c :Φ=⇒x(cid:104)1(cid:105)=i⇒x(cid:104)2(cid:105)=i δ ≤δ 1 (cid:104)(cid:15),δi(cid:105) 2 i∈I i [FORALL-EQ] (cid:96)c ∼ c :Φ=⇒x(cid:104)1(cid:105)=x(cid:104)2(cid:105) 1 (cid:104)(cid:15),δ(cid:105) 2 [LAPGEN] (cid:96)y1 ←$ L(cid:15)(e1)∼(cid:104)k(cid:48)·(cid:15),0(cid:105) y2 ←$ L(cid:15)(e2):|k+e1(cid:104)1(cid:105)−e2(cid:104)2(cid:105)|≤k(cid:48) =⇒y1(cid:104)1(cid:105)+k=y2(cid:104)2(cid:105) y ∈/ FV(e ) y ∈/ FV(e ) 1 1 2 2 [LAPNULL] (cid:96)y1 ←$ L(cid:15)(e1)∼(cid:104)0,0(cid:105) y2 ←$ L(cid:15)(e2):(cid:62)=⇒y1(cid:104)1(cid:105)−y2(cid:104)2(cid:105)=e1(cid:104)1(cid:105)−e2(cid:104)2(cid:105) [ONELAPGEN] (cid:96)y1 ←$ Lo(cid:15)s(e1)∼(cid:104)k(cid:48)·(cid:15),0(cid:105) y2 ←$ Lo(cid:15)s(e2):0≤k+e1(cid:104)1(cid:105)−e2(cid:104)2(cid:105)≤k(cid:48) =⇒y1(cid:104)1(cid:105)+k=y2(cid:104)2(cid:105) y ∈/ FV(e ) y ∈/ FV(e ) 1 1 2 2 [ONELAPNULL] (cid:96)y1 ←$ Lo(cid:15)s(e1)∼(cid:104)0,0(cid:105) y2 ←$ Lo(cid:15)s(e2):(cid:62)=⇒y1(cid:104)1(cid:105)−y2(cid:104)2(cid:105)=e1(cid:104)1(cid:105)−e2(cid:104)2(cid:105) (cid:96)c ∼ c:Φ∧b (cid:104)1(cid:105)=⇒Ψ (cid:96)d ∼ c:Φ∧¬b (cid:104)1(cid:105)=⇒Ψ 1 (cid:104)(cid:15),δ(cid:105) 1 1 (cid:104)(cid:15),δ(cid:105) 1 [COND-L] (cid:96)ifb thenc elsed ∼ c:Φ=⇒Ψ 1 1 1 (cid:104)(cid:15),δ(cid:105) (cid:96)c∼ c :Φ∧b (cid:104)2(cid:105)=⇒Ψ (cid:96)c∼ d :Φ∧¬b (cid:104)2(cid:105)=⇒Ψ (cid:104)(cid:15),δ(cid:105) 2 2 (cid:104)(cid:15),δ(cid:105) 2 2 [COND-R] (cid:96)c∼ ifb thenc elsed :Φ=⇒Ψ (cid:104)(cid:15),δ(cid:105) 2 2 2 Figure3. ProofrulesfromapRHL+ (cid:96)c ∼ c :Φ∧i<e(cid:104)1(cid:105)=⇒Ψ (cid:96)c ∼ c :Φ∧e(cid:104)1(cid:105)=i=⇒Ψ (cid:96)c ∼ c :Φ∧e(cid:104)1(cid:105)<i=⇒Ψ 1 (cid:104)0,0(cid:105) 2 1 (cid:104)(cid:15),δ(cid:105) 2 1 (cid:104)0,0(cid:105) 2 Θ∧e(cid:104)1(cid:105)≤0⇒¬b (cid:104)1(cid:105) Φ(cid:44)Θ∧b (cid:104)1(cid:105)∧b (cid:104)2(cid:105)∧k=e(cid:104)1(cid:105) Ψ(cid:44)Θ∧b (cid:104)1(cid:105)=b (cid:104)2(cid:105)∧k<e(cid:104)1(cid:105) 1 1 2 1 2 [WHILEEXT] (cid:96)whileb doc ∼ whileb doc :Θ∧b (cid:104)1(cid:105)=b (cid:104)2(cid:105)∧e(cid:104)1(cid:105)≤n=⇒Θ∧¬b (cid:104)1(cid:105)∧¬b (cid:104)2(cid:105) 1 1 (cid:104)(cid:15),δ(cid:105) 2 2 1 2 1 2 (Notethatthetwopremisesfori<e(cid:104)1(cid:105)andi>e(cid:104)1(cid:105)canbecombined.However,weoftenusedifferentreasoningforthesecases,sowe prefertopresenttherulewith3premises.) Figure4. Specializedproofruleforwhileloops withprobabilityproportionalto Theorem5. Assumethatthequalityscoreis1-sensitive,i.e. for everyoutputrandadjacentdatabasesd,d(cid:48), (cid:18) (cid:19) Pr[r]∝exp (cid:15)·qscore(r,d) . |qscore(r,d)−qscore(r,d(cid:48))|≤1. 2k ThentheprobabilisticcomputationthatmapsdtoExpM(d,qscore) is((cid:15),0)-differentiallyprivate. TheshapeofthedistributionensuresthattheExponentialmecha- nismfavorselementswithhigherqualityscores. Whiletheredoesnotseemtobemuchofaprogramtoverify, The seminal result of McSherry and Talwar [27] establishes itisknownthattheExponentialmechanismcanbeimplemented differentialprivacyforthismechanism. moreexplicitlyintermsoftheone-sidedLaplacemechanism[12]. r←1;bq←0; Bytherule[FORALL-EQ],itsufficestoprove whiler≤Rdo (cid:96)ExpM∼ ExpM:Φ=⇒(max(cid:104)1(cid:105) =i)⇒(max(cid:104)2(cid:105) =i). cq←$ Los (qscore(d,r)); (cid:104)(cid:15),0(cid:105) if(cq>(cid:15)b/2q∨r=1)thenmax ←r;bq←cq; foreveryi ∈ Z.Themainstepistoapplythe[WHILEEXT]rule r←r+1; withasuitablychosenloopinvariantΘ.WesetΘtobe returnmax (r(cid:104)1(cid:105)<i⇒Θ )∧(r(cid:104)1(cid:105)≥i⇒Θ )∧r(cid:104)1(cid:105)=r(cid:104)2(cid:105), < ≥ Figure5. ImplementationoftheExponentialmechanism whereΘ<standsfor max(cid:104)1(cid:105)<i ∧ max(cid:104)2(cid:105)<i∧|bq(cid:104)1(cid:105)−bq(cid:104)2(cid:105)|≤1 Informally,thecodeloopsthroughallthepossibleoutputvalues, andΘ≥standsfor adding one-sided Laplace noise to the quality score for the val- (max(cid:104)1(cid:105)=max(cid:104)2(cid:105)=i∧bq(cid:104)1(cid:105)+1=bq(cid:104)2(cid:105))∨max(cid:104)1(cid:105)(cid:54)=i. ue/databasepair.Throughoutthecomputation,thecodetracksthe currenthighestnoisyscoreandthecorrespondingelement.Finally, Omittingtheassertionsrequiredforprovingterminationandsyn- itreturnsthetopelement.Forthesakeofsimplicityweassume chronizationoftheloopiterations(whichfollowsfromtheconjunct thatR={1,...,R}forsomeR∈N;generalizingtoanarbitrary r(cid:104)1(cid:105)=r(cid:104)2(cid:105)),wehavetoprovethreedifferentjudgments: finitesetposeslittledifficultyfortheverification.Figure5shows • caser<i:(cid:96)c∼ c:r(cid:104)1(cid:105)<i∧Θ =⇒Θ thecodeoftheimplementation. (cid:104)0,0(cid:105) < < • caser=i:(cid:96)c∼ c:r(cid:104)1(cid:105)=i∧Θ =⇒Θ (cid:104)(cid:15),0(cid:105) < ≥ Informal proof The privacy proof for the Exponential mecha- • caser>i:(cid:96)c∼ c:r(cid:104)1(cid:105)>i∧Θ =⇒Θ nismcannotfollowfromthecompositiontheoremsofdifferential (cid:104)(cid:15),0(cid:105) ≥ ≥ privacy—theone-sidedLaplacenoisedoesnotsatisfydifferential wherecdenotestheloopbodyofExpM: privacy,sothereisnothingtocompose.Nonetheless,wecanstill show((cid:15),0)-differentialprivacyusingourlifting-basedtechniques. cq←$ Lo(cid:15)/s2(qscore(d,r)); ByProposition6,itsufficestoshowthatforeveryintegeriand if(cq>bq∨r=1)thenmax ←r;bq←cq; qualityscoreqscore,theoutputofExpMontwoadjacentdatabases r←r+1 yieldssub-distributionsonmemoriesthatarerelatedbythe((cid:15),0)- Corresponding conditional statements may take the different liftingoftheinterpretationoftheassertion branches,soweapplyonesided-rules[COND-L]and[COND-R]. max(cid:104)1(cid:105)=i⇒max(cid:104)2(cid:105)=i. Report-noisy-max Aclosely-relatedmechanismisReport-noisy- Weoutlineacouplingargument.First,weconsideriterationsofthe max(see,e.g.,DworkandRoth[12]).Thisalgorithmhastheexact loopbodyinwhichtheloopcounterrsatisfiesr<i.Inthiscase, same code except that it samples from the standard (two-sided) wecouplethetwosamplingsusingtherule[ONELAPNULL],using Laplacedistributionratherthantheone-sidedLaplacedistribution. adjacencyofthetwodatabasesand1-sensitivityofthequalityscore It is straightforward to prove privacy for this modification with functiontoestablishthe(0,0)-lifting: theaxiom[LAPGEN](resp.[LAPNULL])forthestandardLaplace distributioninplaceof[ONELAPGEN](resp.[ONELAPNULL]). max(cid:104)1(cid:105)<i ∧ max(cid:104)2(cid:105)<i∧|bq(cid:104)1(cid:105)−bq(cid:104)2(cid:105)|≤1. The interesting case is r = i. In this case, we use the rule 6. AboveThresholdalgorithm [ONELAPGEN]tocoupletherandomsamplingssothat TheSparseVectoralgorithmisthecanonicalexampleofaprogram cq(cid:104)1(cid:105)+1=cq(cid:104)2(cid:105). whose privacy proof goes beyond proofs of privacy primitives andcompositiontheorem.ThecoreofthealgorithmistheAbove Thiscouplinghasprivacycost((cid:15),0)andensuresthatthefollowing Thresholdalgorithm.Inthissection,weprovethatthelatter(as ((cid:15),0)-liftingholdsattheendoftheithiteration: modeledbytheprogramAboveT)is((cid:15),0)-differentiallyprivate; (max(cid:104)1(cid:105)=max(cid:104)2(cid:105)=i∧bq(cid:104)1(cid:105)+1=bq(cid:104)2(cid:105))∨max(cid:104)1(cid:105)(cid:54)=i privacyforthefullmechanismfollowsbysequentialcomposition. Usingtherule[ONELAPNULL]repeatedly,wecoupletherandom Informalproof ByProposition6,itsufficestoshowthatforevery samplings from the remaining iterations to prove that the above integeri,theoutputofAboveTontwoadjacentdatabasesyields ((cid:15),0)-liftingremainsvalidthroughsubsequentiterations—notethat twosub-distributionsoverMemthatarerelatedbythe((cid:15),0)-lifting couplingsforiterationsbeyondiincurnoprivacycost.Finally,we oftheinterpretationoftheassertion applytheruleofconsequencetoconcludethedesired((cid:15),0)-lifting: r(cid:104)1(cid:105)=i⇒r(cid:104)2(cid:105)=i. max(cid:104)1(cid:105)=i⇒max(cid:104)2(cid:105)=i The coupling proof goes as follows. We start by coupling the Formalproof WeprovethefollowingapRHL+judgment,which samplingsofthenoisythresholdssothatT(cid:104)1(cid:105)+1=T(cid:104)2(cid:105);thecost entails((cid:15),0)-differentialprivacy: ofthiscouplingis((cid:15)/2,0).Forthefirsti−1queries,wecouple thesamplingsofthenoisyqueryoutputsusingtherule[LAPNULL]. (cid:96)ExpM∼ ExpM:Φ=⇒max(cid:104)1(cid:105)=max(cid:104)2(cid:105) (cid:104)(cid:15),0(cid:105) By1-sensitivityofthequeriesandadjacencyofthetwodatabases, whereΦdenotestheprecondition weknowevalQ(Q[j],d)(cid:104)2(cid:105)−evalQ(Q[j],d)(cid:104)1(cid:105)≤1,so adj(d(cid:104)1(cid:105),d(cid:104)2(cid:105)) S(cid:104)1(cid:105)<T(cid:104)1(cid:105)⇒S(cid:104)2(cid:105)<T(cid:104)2(cid:105). ∧ qscore(cid:104)1(cid:105)=qscore(cid:104)2(cid:105) Thus,ifside(cid:104)1(cid:105)doesnotchangethevalueofr,neitherdoesside ∧ ∀r∈R.|qscore(cid:104)1(cid:105)(d(cid:104)1(cid:105),r)−qscore(cid:104)1(cid:105)(d(cid:104)2(cid:105),r)|≤1. (cid:104)2(cid:105).Infact,wehavethestrongerinvariant The conjuncts of the precondition are self-explanatory: the first r(cid:104)1(cid:105)=|Q|+1⇒r(cid:104)2(cid:105)=|Q|+1∧(r(cid:104)1(cid:105)=|Q|+1∨r(cid:104)1(cid:105)<i), statesthatthetwodatabasesareadjacent,thesecondstatesthatthe twoscorefunctionsareequal,andthelaststatesthatthequality where r = |Q| + 1 means that the loop has not exceeded the scorefunctionis1-sensitive. thresholdyet. Whenwereachtheithiterationandi<|Q|+1,wecouplethe i←1;v←0;r←|Q|+1; samplingsofSsothatS(cid:104)1(cid:105)+1=S(cid:104)2(cid:105);thecostofthiscoupling T ←$ L(cid:15)/2(t); is((cid:15)/2,0).BecauseT(cid:104)1(cid:105)+1=T(cid:104)2(cid:105)andS(cid:104)1(cid:105)+1=S(cid:104)2(cid:105),we whilei<|Q|do entertheconditionalinthesecondexecutionassoonasweenterthe S ←$ L(cid:15)/4(evalQ(Q[i],d)); conditionalinthefirstexecution.Fortheremainingiterationsr>i, if(T ≤S ∧r=|Q|+1)thenr←i; v←S itiseasytoprove i←i+1; r(cid:104)1(cid:105)=i⇒r(cid:104)2(cid:105)=i. returnv Formalproof WeprovethefollowingapRHL+judgment,which Figure6. BuggyAboveThresholdalgorithm entails((cid:15),0)-differentialprivacy: (cid:96)AboveT∼ AboveT:Φ=⇒r(cid:104)1(cid:105)=r(cid:104)2(cid:105), (cid:104)(cid:15),0(cid:105) Anotherinterestingvariantofthealgorithmdealswithstreamsof whereΦdenotestheprecondition queries.Iftheoutputofthequeriesisuniformlyboundedbelow,then theprogramterminateswithprobability1andtheproofproceedsas adj(d(cid:104)1(cid:105),d(cid:104)2(cid:105)) usual.However,iftheanswerstothestreamofqueriesarebelow ∧ t(cid:104)1(cid:105)=t(cid:104)2(cid:105) thethresholdandfalling,theprobabilityofnon-terminationcanbe ∧ Q(cid:104)1(cid:105)=Q(cid:104)2(cid:105) positive.Theinteractionofnon-terminationanddifferentialprivacy ∧ ∀j. |evalQ(Q(cid:104)1(cid:105)[j],d(cid:104)1(cid:105))−evalQ(Q(cid:104)2(cid:105)[j],d(cid:104)2(cid:105))|≤1. isunusual;mostworksassumethatalgorithmsalwaysterminate. Theconjunctsofthepreconditionarestraightforward:thefirststates The Sparse Vector technique has also been studied by the thatthetwodatabasesareadjacent,thesecondandthirdstatethat databasecommunity.RecentworkbyChenandMachanavajjhala Qandtcoincideinbothruns,andthelaststatesthatallqueriesare [10]showsthatmanyproposedgeneralizationsoftheSparseVector 1-sensitive.Bytherule[FORALL-EQ],itsufficestoprove algorithmarenotdifferentiallyprivate. (cid:96)AboveT∼ AboveT:Φ=⇒(r(cid:104)1(cid:105) =i)⇒(r(cid:104)2(cid:105) =i). (cid:104)(cid:15),0(cid:105) 7. Relatedwork foreveryi∈Z. Couplingisanestablishedtoolinprobabilitytheory,butitseems Webeginwiththethreeinitializations: lessfamiliartocomputerscience.Itwasonlyquiterecentlythat j ←1; couplings have been used in cryptography; according to Hoang r←|Q|+1; andRogaway[20],whousecouplingstoreasonaboutgeneralized T ←$ L(cid:15)(t); Feistel networks, Mironov [28] first used this technique in his analysis of RC4. Similarly, we are not aware of couplings in Thiscommandc0computesanoisyversionofthethresholdt.We differentialprivacy,thoughthereseemstobeanimplicitcoupling usetherule[LAPGEN]with(cid:15)=(cid:15)/2,k=1andk(cid:48) =k,noticing argumentbyDworketal.[16].Thereareseeminglyfewapplications thattisthesamevalueinbothsides.Thisprovesthejudgment of coupling in formal verification, despite considerable research (cid:96)c ∼ c :Φ=⇒T(cid:104)1(cid:105)+1=T(cid:104)2(cid:105). onprobabilisticbisimulation(firstintroducedbyLarsenandSkou 0 (cid:15)/2 0 [23])andprobabilisticrelationalprogramlogics(firstintroduced Notice that the (cid:15)/2 we are paying here is not for the privacy of byBartheetal.[3]).Theconnectionbetweenliftingsandcouplings thethreshold—whichisnotprivateinformation!—butratherfor wasrecentlynotedbyBartheetal.[6]. ensuringthatthenoisythresholdsareoneapartinthetworuns. Therearemanylanguage-basedtechniquesforprovingdifferen- Next,weconsiderthemainloopc1: tialprivacyforprograms,includingdynamicchecking[17,26],the alreadymentionedrelationalprogramlogic[2,4]andrelationalre- whilej <|Q|do finementtypesystems[8],linear(dependent)typesystems[18,29], S ←$ L(cid:15)/4(evalQ(Q[j],d)); productprograms[5],andmethodsbasedoncomputingbisimu- if(T ≤S ∧r=|Q|+1)thenr←j; lationsfamiliesforprobabilisticautomata[31,32].Noneofthese j ←j+1; techniquescandealwiththeexamplesinthispaper. andprovethejudgment (cid:96)c ∼ c :Φ∧T(cid:104)1(cid:105)+1=T(cid:104)2(cid:105)=⇒(r(cid:104)1(cid:105) =i)⇒(r(cid:104)2(cid:105) =i) 8. Conclusion 1 (cid:15)/2 1 withthe[WHILEEXT]rule.Theproofissimilartotheoneforthe We show new methods for proving differential privacy with ap- Exponentialmechanism,usinginvariantsfromtheinformalproof. proximatecouplings.Wetakeadvantageofthefullgeneralityof approximatecouplings,showingthatthecompositionprinciplefor OtherversionsofAboveThreshold Asnotedintheintroduction, couplingsgeneralizesthestandardcompositionprinciplefordiffer- differentversionsofAboveThresholdhavebeenconsideredinthe entialprivacy.Ourprinciplessupportconciseandcompositional literature.Onevariantreturnsthefirstnoisyvalueabovethreshold; proofsthatarearguablymoreelegantthanexistingpen-and-paper see Figure 6 for the code. While this was thought to be private, proofs. Although our results are presented from the perspective errorsintheproofwerelateruncovered.Underourcouplingproof, offormalverification,webelievethatourcontributionsarealso theerrorisobvious:weneedtoprovev(cid:104)1(cid:105) = v(cid:104)2(cid:105)fortheresult relevanttothedifferentialprivacycommunities. tobeprivate,soweneedevalQ(Q[i],d(cid:104)1(cid:105)) = evalQ(Q[i],d(cid:104)2(cid:105)) Inthefuture,weplantouseourmethodsalsofortheverification after the critical iteration r = i. But we have already coupled adaptivedataanalysisalgorithmsusedtopreventfalsediscoveries, evalQ(Q[i],d(cid:104)1(cid:105))+1 = evalQ(Q[i],d(cid:104)2(cid:105))duringthisiteration. suchastheoneproposedbyDworketal.[15],andfortheformal Lyuetal.[25]providefurtherdiscussionofthis,andother,incorrect verificationofmechanismdesign[7].Beyondtheseexamples,the implementationsoftheSparseVectortechnique. pointwisecharacterizationofequalitycanbeadaptedtostochastic On the other hand, it is possible to prove (2(cid:15),0)-differential dominance,andprovidesausefultooltofurtherinvestigatemachine- privacyforamodifiedversionofthealgorithm,wherethereturned checkedverificationofcouplingarguments. valueusesfreshnoise(e.g. byaddingaftertheloophascompleted Itcouldalsobeinterestingtousethepointwisecharacterization thesamplingv←$ L(cid:15)(evalQ(Q[r],d))). ofdifferentialprivacytosimplifyexistingformalproofs.Forexam- ple,Bartheetal.[4]provedifferentialprivacyofthevertexcover SymposiumonTheoryofComputing(STOC),Portland,Oregon,pages algorithm [19]. This algorithm does not use standard primitives; 117–126,2015. instead,itsamplesfromacustomdistributionspecifictothegraph. [16] C.Dwork,M.Naor,O.Reingold,andG.N.Rothblum.Puredifferential Theexistingformalproofusesacustomruleforloops,reasoning privacyforrectanglequeriesviaprivatepartitions. InInternational bycaseanalysisontheoutputoftherandomsamplings.Pointwise ConferenceontheTheoryandApplicationofCryptologyandInforma- differentialprivacycouldhandlethisreasoningmoreelegantly. tionSecurity(ASIACRYPT),Auckland,NewZealand,pages735–751. SpringerBerlinHeidelberg,2015.ISBN978-3-662-48799-0. Acknowledgments WewarmlythankAaronRothforchallenging [17] H.Ebadi,D.Sands,andG.Schneider.Differentialprivacy:Nowit’s uswiththeproblemofverifyingSparseVector.Wealsothankhim gettingpersonal.InACMSIGPLAN–SIGACTSymposiumonPrinciples andJonathanUllmanforgooddiscussionsaboutchallengesand ofProgrammingLanguages(POPL),Mumbai,India,pages69–81, subtletiesoftheproofofSparseVector.Thisworkwaspartially 2015.ISBN978-1-4503-3300-9. supportedbyNSFgrantsTWC-1513694,CNS-1065060andCNS- [18] M.Gaboardi,A.Haeberlen,J.Hsu,A.Narayan,andB.C.Pierce. Lineardependenttypesfordifferentialprivacy. InACMSIGPLAN– 1237235,byEPSRCgrantEP/M022358/1andbyagrantfromthe SIGACTSymposiumonPrinciplesofProgrammingLanguages(POPL), SimonsFoundation(#360368toJustinHsu). Rome,Italy,pages357–370,2013. [19] A.Gupta,K.Ligett,F.McSherry,A.Roth,andK.Talwar.Differentially References privatecombinatorialoptimization. InACM–SIAMSymposiumon DiscreteAlgorithms(SODA),Austin,Texas,pages1106–1125,2010. [1] M.Barr. Relationalalgebras. InS.MacLane,editor,Reportsof theMidwestCategorySeminar,IV,volume137ofLectureNotesin [20] V.T.HoangandP.Rogaway. OngeneralizedFeistelnetworks. In Mathematics,page39–55.Springer-Verlag,1970. IACRInternationalCryptologyConference(CRYPTO),SantaBarbara, California,volume6223ofLectureNotesinComputerScience,pages [2] G.BartheandF.Olmedo. Beyonddifferentialprivacy:Composition 613–630.Springer,2010. theoremsandrelationallogicforf-divergencesbetweenprobabilistic programs.InInternationalColloquiumonAutomata,Languagesand [21] B.Jonsson,W.Yi,andK.G.Larsen.Probabilisticextensionsofprocess Programming(ICALP),Riga,Latvia,volume7966ofLectureNotesin algebras.InHandbookofProcessAlgebra,pages685–710.Elsevier, ComputerScience,pages49–60.Springer,2013. Amsterdam,2001. [3] G.Barthe,B.Grégoire,andS.Zanella-Béguelin.Formalcertification [22] D.Kozen.Semanticsofprobabilisticprograms.InIEEESymposium ofcode-basedcryptographicproofs.InACMSIGPLAN–SIGACTSym- onFoundationsofComputerScience(FOCS),SanJuan,PuertoRico, posiumonPrinciplesofProgrammingLanguages(POPL),Savannah, pages101–114,1979. Georgia,pages90–101,NewYork,2009. [23] K.G.LarsenandA.Skou.Bisimulationthroughprobabilistictesting. [4] G.Barthe,B.Köpf,F.Olmedo,andS.Zanella-Béguelin.Probabilistic InACMSymposiumonPrinciplesofProgrammingLanguages(POPL), relationalreasoningfordifferentialprivacy. ACMTransactionson Austin,Texas,pages344–352.ACMPress,1989. ProgrammingLanguagesandSystems,35(3):9,2013. [24] T.Lindvall. Lecturesonthecouplingmethod. CourierCorporation, [5] G.Barthe,M.Gaboardi,E.J.GallegoArias,J.Hsu,C.Kunz,andP.-Y. 2002. Strub.ProvingdifferentialprivacyinHoarelogic.InIEEEComputer [25] M.Lyu,D.Su,andN.Li.Understandingthesparsevectortechnique SecurityFoundationsSymposium(CSF),Vienna,Austria,2014. fordifferentialprivacy.2016. [6] G.Barthe,T.Espitau,B.Grégoire,J.Hsu,L.Stefanesco,andP.-Y. [26] F.McSherry. Privacyintegratedqueries. InACMSIGMODInterna- Strub.Relationalreasoningviaprobabilisticcoupling.InInternational tionalConferenceonManagementofData(SIGMOD),Providence, Conference on Logic for Programming, Artificial Intelligence and RhodeIsland,2009. Reasoning(LPAR),Suva,Fiji,volume9450,pages387–401,2015. [27] F.McSherryandK.Talwar.Mechanismdesignviadifferentialprivacy. [7] G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and InIEEESymposiumonFoundationsofComputerScience(FOCS), P.Strub. Computer-aidedverificationinmechanismdesign. CoRR, Providence,RhodeIsland,pages94–103,2007. abs/1502.04052,2015. [28] I.Mironov.(Notso)randomshufflesofRC4.InIACRInternational [8] G.Barthe,M.Gaboardi,E.J.GallegoArias,J.Hsu,A.Roth,and CryptologyConference(CRYPTO),SantaBarbara,California,volume P.-Y. Strub. Higher-order approximate relational refinement types 2442ofLectureNotesinComputerScience,pages304–319.Springer, formechanismdesignanddifferentialprivacy. InACMSIGPLAN– 2002. SIGACTSymposiumonPrinciplesofProgrammingLanguages(POPL), [29] J.ReedandB.C.Pierce. Distancemakesthetypesgrowstronger: Mumbai,India,2015. Acalculusfordifferentialprivacy. InACMSIGPLANInternational [9] N.Benton.Simplerelationalcorrectnessproofsforstaticanalysesand ConferenceonFunctionalProgramming(ICFP),Baltimore,Maryland, programtransformations.InACMSIGPLAN–SIGACTSymposiumon 2010. PrinciplesofProgrammingLanguages(POPL),Venice,Italy,pages [30] H.Thorisson. Coupling,Stationarity,andRegeneration. Springer, 14–25,2004. 2000. [10] Y.ChenandA.Machanavajjhala.Ontheprivacypropertiesofvariants [31] M.C.Tschantz,D.Kaynar,andA.Datta.Formalverificationofdiffer- onthesparsevectortechnique.CoRR,abs/1508.07306,2015. entialprivacyforinteractivesystems(extendedabstract). Electronic [11] Y.DengandW.Du.Logical,metric,andalgorithmiccharacterisations NotesinTheoreticalComputerScience,276(0):61–79,2011. of probabilistic bisimulation. Technical Report CMU-CS-11-110, [32] L.Xu,K.Chatzikokolakis,andH.Lin.Metricsfordifferentialprivacy CarnegieMellonUniversity,March2011. inconcurrentsystems. InIFIPInternationalConferenceonFormal [12] C.DworkandA.Roth. Thealgorithmicfoundationsofdifferential TechniquesforDistributedObjects,ComponentsandSystems(FORTE), privacy.FoundationsandTrendsinTheoreticalComputerScience,9 Berlin,Germany,volume8461ofLectureNotesinComputerScience, (3-4):211–407,2014. pages199–215,June2014. [13] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In IACRInternationalConferenceontheTheoryandApplicationsof CryptographicTechniques(EUROCRYPT),SaintPetersburg,Russia, pages486–503.Springer,2006. [14] C.Dwork,F.McSherry,K.Nissim,andA.Smith.Calibratingnoiseto sensitivityinprivatedataanalysis. InIACRTheoryofCryptography Conference(TCC),NewYork,NewYork,pages265–284,2006. [15] C.Dwork,V.Feldman,M.Hardt,T.Pitassi,O.Reingold,andA.Roth. Preservingstatisticalvalidityinadaptivedataanalysis.InACMSIGACT

See more

The list of books you might like