Logout succeed
Logout succeed. See you again!

Packing dimensions and cartesian products PDF
Preview Packing dimensions and cartesian products
Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Packing dimensions and cartesian products Ondˇrej Zindulka CzechTechnicalUniversityPrague [email protected] St Andrews 2007 OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Hausdorff measure Lebesgue measure: (cid:110)(cid:88) (cid:111) L(E)=supinf diamI :{I } a cover of E by intervals of length <δ i i δ>0 i s-dimensional Hausdorff measure (s>0): (cid:110)(cid:88) (cid:111) Hs(E)=supinf (diamE )s :{E } is a δ-cover of E i i δ>0 i Hausdorff dimension: dim E =inf{s:HsE =0}=sup{s:HsE =∞} H OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Packing measure Packing of E ⊆X: Disjoint collection of balls B(x,r) with x∈E. s-dimensional packing pre-measure: (cid:110)(cid:88) (cid:111) Ps(E)= inf sup (2r )s :{B(x ,r )} is a δ-packing of E 0 i i i δ>0 i s-dimensional packing measure: (cid:110)(cid:88) (cid:111) Ps(E)=inf Ps(E ):{E } is a cover of E n n n Packing dimension: dim E =inf{s:Ps(E)=0}=sup{s:Ps(E)=∞}. P Fact Hs(E)(cid:54)Ps(E) dim E (cid:54)dim E H P OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Cartesian product inequalities X,Y separable metric spaces. Provide X×Y with a maximum metric: Balls are squares. Theorem (Marstrand, Tricot, Howroyd...) dim X+dim Y (cid:54)dim X×Y H H H (cid:54) dim X+dim Y (cid:54)dim X×Y H P P (cid:54)dim X+dim Y P P OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Hu & Taylor’s definition dim X (cid:54)dim X×Y −dim Y H P P dim X (cid:54)inf {dim X×Y −dim Y} H Y P P Definition (Hu & Taylor ’94) X ⊆Rn : aDimX =inf{dim X×Y −dim Y :Y ⊆Rn Borel} P P We know: dim X (cid:54)aDimX H Question (Hu & Taylor): Is dim X =aDimX? H Answer (Bishop & Peres, Xiao ’96): No! OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Upper box-counting dimension Box-counting function: N (δ)=min{|A|: A is a δ-cover of E} E Upper box-counting dimension: logN (δ) dim E =limsup E B |logδ| δ→0 Upper packing dimension: dim E = inf supdim E P (cid:83)En=X n B n Theorem (well-known) dim X =dim X P P OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Lower box-counting dimension Box-counting function: N (δ)=min{|A|: A is a δ-cover of E} E Lower box-counting dimension: logN (δ) dim E =liminf E B δ→0 |logδ| Lower packing dimension: dim E = inf supdim E P (cid:83)En=X n B n Theorem (Tricot ’82) dim X (cid:62)dim X (but not dim X =dim X). P H P H OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Improving dim X (cid:54) aDimX H Theorem (Bishop & Peres, Xiao ’96) If X ⊆Rn is compact and Y ⊆Rn is Borel, then dim X+dim Y (cid:54)dim X×Y P P P hence dim X (cid:54)aDimX P But not dim X =aDimX. P Limitations of the proofs: B&P: Rather special representation of compact sets in Rn Xiao: Baire category theorem Both about dimension rather than measures OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Goals Define lower packing measure so that dim X =inf{s:Ps(X)=0}=sup{s:Ps(X)=∞} P Show, for arbitrary metric spaces, Ps(X)·Pt(Y)(cid:54)Ps+t(X×Y) Modify dim so that P dim X (cid:54)aDimX becomes dim X =aDimX P −−→P OndˇrejZindulka Packingdimensionsandcartesianproducts Productinequalities Packingmeasures Productformulas Thinsets Dimensionofpowers Examplesandproblems Packing measures revisited Joyce & Preiss ’95, Edgar ’01,’07: Packing revised: {B(x ,r )} s.t. x ∈/ B(x ,r ) i i j i i Hausdorff function: g :[0,∞)→[0,∞) nondecreasing g(r)=0 iff r=0 no continuity required Notation: ∆(cid:32)0 means ∆⊆R, 0∈∆ A packing π ={B(x ,r )} is ∆-valued if r ∈∆ i i i (cid:80) g(π)= g(r ) i i Definition (Lower packing pre-measure) Pg(E)= inf sup{g(π):π is a ∆-valued packing of E} 0 ∆(cid:32)0 OndˇrejZindulka Packingdimensionsandcartesianproducts