Logout succeed
Logout succeed. See you again!

On Preferring and Inspecting Abductive Models PDF
Preview On Preferring and Inspecting Abductive Models
On Preferring and Inspecting Abductive Models LuísMonizPereira1 PierangeloDell’Acqua2 GonçaloLopes1 1CENTRIA-CentrodeInteligênciaArtificial UniversidadeNovadeLisboa,Portugal 2ITN-DepartmentofScienceandTechnology LinköpingUniversity,Sweden PADL’09–Savannah,Georgia-January19-20,2009 Pereira&Dell’Acqua&Lopes PADL’09 1/87 Outline Outline • Abductiveframework • Declarativesemantics • Pragmatics • Proceduralsemantics • Aposterioripreferences • Medicaldiagnosis • Moraldecisionmaking • Implementation • Conclusions Pereira&Dell’Acqua&Lopes PADL’09 2/87 AbductiveFramework Declarative Abduction and Preferences Framework (cid:4) Abductionisapowerfulmechanismtoaccountfordefeasiblereasoning andincompleteknowledge (cid:4) AbductiveLogicProgramsallowforincompletelydefinedliterals • eachabductiveliteral(abducible)canbeassumedeithertrueorfalseina 2-valuedsemantics • AbductiveLogicProgramstypicallyhaveseveralmodelsthatarederived fromtheabducedliterals (cid:4) PreferencesinLogicProgramminghavemostlybeenfocusedon: • preferencesamongrulesofatheory • preferencesovertheoryliterals Pereira&Dell’Acqua&Lopes PADL’09 3/87 AbductiveFramework Enabling Pre and Post Preferences (cid:4) Ourapproachisbasedonhandlingpreferencerelationsbetween abducibles (cid:4) Preferencesoverabduciblesareenactedbothapriorioraposterioriwrt. themodelgeneration: • apriori: toenactpreferencesduringthecomputationofthemodelsofa theory • aposteriori: toenactpreferencesonthecomputedmodelsofatheory (cid:4) Abduciblescanbeemployedasnamingdevices(cf. Poole)of,sayrules, onwhichpreferencesarethenenacted Pereira&Dell’Acqua&Lopes PADL’09 4/87 AbductiveFramework Basic Abductive Framework (cid:4) LetLbeafirstorderpropositionallanguagedefinedasfollows (cid:4) AliteralcanbeeitheranatomAoritsdefaultnegationnotA (cid:4) Aruletakestheform: A ← L ,...,L 1 t whereAisanatomandL ,...,L (t ≥ 0)areliterals 1 t (cid:4) Anintegrityconstraintisarulewhoseheadis⊥: ⊥ ← L ,...,L 1 t Pereira&Dell’Acqua&Lopes PADL’09 5/87 AbductiveFramework (cid:4) Eachprogramisassociatedwithasetofabducibles: literalswhichdonotoccurinanyrulehead (cid:4) Totestwhetheracertainabduciblehasbeenabduced,weexploitthe reservedabducible abduced(a) foreveryabduciblea (cid:54)(cid:54)= abduced(.) (cid:4) abduced(a)actsasaconstraintthatissatisfiedinthesolutionifthe abducibleaisindeedassumed (cid:4) Itcanbeconstruedasmeta-abductionintheformofabducingtocheck (orpassivelyverify)thatacertainabductionisadopted (cid:4) abduced(a)permitstocheckforside-effectsofabductionsmade Pereira&Dell’Acqua&Lopes PADL’09 6/87 AbductiveFramework Example LetPbe: p←abduced(a),a q←abduced(b) withsetofabduciblesA = {a,b,abduced(a),abduced(b)} P Phasfourintendedmodels: • M ={} 1 • M ={p,a,abduced(a)} 2 • M ={q,b,abduced(b)} 3 • M ={p,q,a,b,abduced(a),abduced(b)} 4 ∗ Theset{q,abduced(b)}isnotanintendedmodelsincetheassumption ofabduced(b)requirestheassumptionofb Pereira&Dell’Acqua&Lopes PADL’09 7/87 AbductiveFramework Hypotheses Generation (cid:4) Abduciblesextendatheoryandcanbeusedtoprovidealternative explanationsforagivenquery (cid:4) Generatingallalternativeexplanationsforaqueryisacentralproblemin abductionbecauseofthecombinatorialexplosion (cid:4) So,generateonlythoseexplanationswhicharepreferredandrelevantfor thequery Pereira&Dell’Acqua&Lopes PADL’09 8/87 AbductiveFramework Enabling the Assumption of Abducibles (cid:4) Thenotionofexpectationisemployedtoexpresspreconditionsfor enablingtheassumptionofabducibles (cid:4) Aconsideredabduciblecanbeassumedonlyifthereisanexpectation foritand,furthermore,thereisnoexpectationtothecontrary: expect(a) ← L ,...,L 1 t expect_not(a) ← L ,...,L 1 t foreveryabduciblea (cid:54)(cid:54)= abduced(.) (cid:4) Thatis,assumedabduciblesarethosewhoseconsiderationisexpected andnotdefeated Pereira&Dell’Acqua&Lopes PADL’09 9/87 AbductiveFramework ExampleLetPbe: p←a q←b expect(a) expect(b) expect_not(a)←q withA = {a,b,abduced(a),abduced(b)} P Phasthreeintendedmodels,forwheneverAbd isabduced abduced(Abd)isintendedaswell: • M ={expect(a),expect(b)} 1 • M ={p,a,abduced(a),expect(a),expect(b)} 2 • M ={q,b,abduced(b),expect(a),expect(b)} 3 ∗ Itisnotpossibletoassumebothaandbbecausetheassumptionofb makesqtruewhichinturnmakesexpect_not(a)truepreventingatobe assumed;i.e. theconsiderationofaisdefeated Pereira&Dell’Acqua&Lopes PADL’09 10/87