Logout succeed
Logout succeed. See you again!

ON COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH SUCTION PDF
Preview ON COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH SUCTION
ON COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH SUCTION By Vi-Chang L iu A d i s s e r t a t i o n s u b m itte d in p a r t i a l f u l f i l l m e n t o f th e r e q u ir e m e n ts f o r th e d e g re e of D o c to r o f P h ilo so p h y in th e U n i v e r s i t y o f M ichigan 1950 Committee in ch arg e: P r o f e s s o r A rnold M. K u^the, Co-Chairman A s s o c ia te P r o f e s s o r J u l i u s D. S o h e tz e r, Co-Chairman A s s o c ia te P r o f e s s o r Mark V. M orkovin A s s o c ia te P r o f e s s o r R o b ert C. F„ B a r te ls j 1 ACKNOWLEDGMENTS The au th o r would lik e to ta k e th is oppor tu n ity to express h is s in c e re g r a titu d e to P ro fesso rs A„ M. Kuethe, J . D. dch etzer, R. 0. F. B a rte ls and M. V. Morkovin fo r t h e i r v alu ab le c ritic is m s and suggestions about h is workj p a r t i c u l a r l y to P ro fesso r A. M. Kuethe fo r h is kind e f f o r t to make t h is work p o s s ib le . Acknowledgment is e lso made to his w ife, Hsi-Yen, who typed the p relim in a ry m anuscript in the turm oil of h e r m edical c a re e r. ABSTRACT An exhaustive study has been made of the exact mpthods of solvin g the com pressible lam inar boundary la y e r eauatlons of the flow along a f l a t p la te with su o tlo n . The ex isten ce of " sim ila r p r o f ile s " in the flow is considered as the key to the exact so lu tio n of th e boundary la y e r equ atio n s. Two g en eral types of boundary la y e r flow problems have been discu ssed: (1) Flow along a f la t p la te with constant tem perature and with su c tio n , (2) Flow along a f l a t p la te with an a r b i t r a r y a n a ly tic d is tr ib u tio n of wall tem perature and with su c tio n . "S im ilar p r o f ile s " is defined as a p ro p erty of a c e rta in type of boundary la y e r flow In which the v e lo c ity or tem perature d is tr ib u tio n (or both) can be expressed as fu n ctio n (or fu n ctio n s) of a sin g le v a ria b le . The ex isten ce of such s im ila r p r o f ile s in the boundary la y e r flow makes i t p o ssib le to reduce i t s a sso c ia te d boundary la y e r equations to an ordinary d i f f e r e n tia l eouation. In the second ty re of boundary lay e r flow as above mentioned, i t is not expected th at sim ila r tem perature p r o f ile s w ill e x is t. i l l A c o m p a tib ility co ndition f o r the existenoe of sim ila r v e lo c ity p r o f ile s and sim ila r tem perature p ro file s in the f i r s t type of boundary la y e r flow (as above mentioned) and s im ila r v e lo c ity p r o f ile s alone In the second type of boundary la y e r flow has been developed. For the boundary la y e r flow over the p la te w ith constant tem perature and with su ctio n , P ra n d tl number and s p e c ific h e ats a re assumed to be c o n stan t. Through sim ila r p r o f ile s transform ation, the boundary la y e r equations are reduced to a system of two ordinary n o n -lin e a r d if f e r e n c ia l eouations which are solved by a sp e c ia l method of successive approxim ation. For the boundary la y e r flow of the second type, one a d d itio n a l • assumption is ma.de, namely, p. = CT. In th is case the momen tum equation alone is reduced to an ordinary d i f f e r e n t i a l equation of B lasius type while the energy eoufltion becomes a p a r t i a l lin e a r d i f f e r e n t i a l eouation. The l a t t e r is solved by method of se p ara tio n of v a ria b le s . The th re e co n fig u ra tio n s of suction d is trib u tio n which are compatible with the ex istence of "sim ila r pro f ile s " as above mentioned are as follow s: (1) Uniform ta n g e n tia l v e lo c ity ,a n d zero normal suet Ion. (2) Uniform ta n g e n tia l v e lo c ity ,a n d normal v elo city p rescribed p ro p o rtio n al to the wall tem perature (for th is c a s e ,s im ila r p ro file s e x ist a t I n f in ite d istan c e downstream from ending edge of the p la te .) iv (3) Uniform ta n g e n tia l v e lo c ity ; normal v e lo c ity p rescrib ed p ro p o rtio n a l to the w all tem perature and in v ersely p ro p o rtio n a l to th e souare root of d istan ce from the leading edge of the p la te . 0 An extensive se t of c a lc u la tio n s has been made f o r d if f e r e n t types of boundary co n d itio n s in which the in te n s ity of suction and the w all tem oerature a re v aried . R esults i n d ic a t'3 th a t normal suction is more e ffe c tiv e in reducing th e th ic k n e ss of boundary la y e r than # ta n g e n tia l su c tio n . Thin boundary la y e r IS d e s ira b le in lam inar s t a b i l i t y c o n sld era tio n and superaerodynamlc wind tu n n el d esig n . Approximate formulas f o r rap id p re d ic tio n of skin f r ic tio n c o e ffic ie n t and heat t r a n s f e r c o e ffic ie n t have been d e riv ed . The r e s u lts c a lc u la te d by using th ese approxi mate form ulas show e x c e lle n t agreem ent with the "exact values" from laborious ste p -b y -s te p in te g ra tio n . TABLE OF CONTENTS No. Page ACKNOWLEDGMENT S' ..................................................... i i ABSTRACT .......... H i LIST OF TABLES ............................................................... viL LIST OF ILLUSTRATIONS ............. viii 1 INTRODUCTION .................................................... 1 2 NOMENCLATURE ........................................... 3 3 THE COMPRESSIBLE LAMINAR BOUNDARY LAYER EQUATIONS IN TWO-DIMENSIONAL FLOW .......................................... 7 if. A BRIEF REVIEW OF THE PREVIOUS WORKS ON COMPRESSIBLE LAMINAR BOUNDARY LAYER FLOW ........................... 16 5 STATEMENT OF THE PROBLEM . .................................... 30 6 SIMPLIFICATION OF BOUNDARY LAYER EQUATIONS WITH SUCTION .......................... 32 7 "SIMILAR PROFILES" TRANSFORMATION ............................................. 36 g SOLUTION OF THE BOUNDARY VALUE PROBLEMS ............................. E5 9 THE APPROXIMATE FORMULAS FOR SKIN FRICTION COEFFICIENT AND HEAT TRANSFER COEFFICIENT ........................ 65 10 RESULTS AND DISCUSSION ......... 69 11 CONCLUSIONS ...................................................................................... 9^ APPENDIX .......................................... 96 BIBLIOGRAPHY ............. 123 LIST OF TABLES JABL£ PACE I C alcu latio n of ■«," w ith Various Values of c. and c, . 96 I I C alcu latio n of Yc , Y« ', X , Y*. w ith 99 C6 = 2 . c, = o . I l l Values o f 'fo) w ith c,= o . 100 IV V elocity and Temperature D istrib u tio n in the Boundary Layer along a Heat In su la te d P la te w ith Various Values of and c, . 101 V V elocity and Temperature D istrib u tio n in the Boundary Layer along a Cold P la te (tv* 14 ) w ith Various Values of c* and c, , 102 VI V elocity and Temperature D istrib u tio n in the Boundary Layer along a P la te w ith Non-uniform Surface Temperature D istrib u tio n . 107 LIST OF ILLUSTRATIONS 1 V elocity D istrib u tio n s in the Boundary Layer Flows along a Heat In su la te d P late w ith Normal and T angential Suction. 2 Temperature D istrib u tio n s in the Boundary Layer Flows along a Heat In su lated P late w ith Normal and T angential Suction. 3 V elocity D istrib u tio n s in the Boundary Layer Flows along a Heat In su la te d P late w ith D ifferent Degrees of In te n s ity of Normal Suction. M- Recovery Factors in the Boundary Layer Flows along a Heat In su lated P late w ith D ifferent Degrees of In te n s ity of Normal Suction. 5 Temperature D istrib u tio n s in the Boundary Layer Flows along a Heat In su la te d P late w ith D ifferen t Degrees of In te n s ity of Normal Suction* 6 V elocity D istrib u tio n s in the Boundary Layer Flows along a Cold P late w ith Normal and Tan g e n tia l Suction. 7 Temperature D istrib u tio n s in th e Boundary Layer Flows along a Cold P la te with Normal and Tan g e n tia l Suction. 8 V elocity D istrib u tio n in the Boundary Layer Flow along a P la te w ith V ariable Surface Temperature D is tr ib u tio n . Temperature D istrib u tio n in the Boundary Layer 9 Flow along a P late w ith V ariable Surface Temper a tu re D istrib u tio n . 10 Comparison of R esults of Skin F ric tio n Coeffi c ie n t and Heat T ransfer C oefficient C alculation by Approximate Formula w ith those by Exact Method. viii 1. INTRODUCTION The Idea of boundary la y e r c o n tro l by auction or In je c tio n has been su c c e ss fu lly a p p lied in various f ie ld s : (1) In in c re a sin g s t a b i l i t y of lam inar boundary la y e r, (2) in re ta rd in g boundary la y e r flow sep ara tio n , and (3) in sw eat-cooling of combustion chambers in Jet motors and ro c k e ts. Experim ental r e s u lts in d ic a te th a t the boundary la y e r s tr u c tu r e d e f i n i te l y in flu en ces shock wsve form ation (Refs. 32, 33)» In f a c t, so much so t h a t , fo r th e sake of sim p lify in g the experim ental in v e s tig a tio n of the shock wave, It would be a d v isa b le to remove the boundary lay er i f i t is p o s s ib le . Experim ental evidence In d ic a te s th a t surface suction is a p o te n tia lly powerful means of Increasing the s t a b i l i t y of the lam inar boundary la y e r. A knowledge as a c c u ra te as p o ssib le , of th e v e lo c ity and tem perature d is tr ib u tio n in the lam inar boundary la y e r with suction forms the s ta r tin g p o in t fo r the s t a b i l i t y In v e s tig a tio n . In view of the e x tra o rd in a rily com plicated equa tio n s of the boundary la y e r flow, exact so lu tio n to the boundary la y e r equations with any sp e c ia l suction d i s t r i bution w ill command I n t e r e s t.