Logout succeed
Logout succeed. See you again!

Nonlocal Diffusion and Applications PDF
Preview Nonlocal Diffusion and Applications
Lecture Notes of the Unione Matematica Italiana Claudia Bucur Enrico Valdinoci Nonlocal Diffusion and Applications Lecture Notes of 20 the Unione Matematica Italiana Moreinformationaboutthisseriesathttp://www.springer.com/series/7172 Editorial Board CiroCiliberto FrancoFlandoli (EditorinChief) Dipartimentodi DipartimentodiMatematica MatematicaApplicata UniversitàdiRomaTorVergata UniversitàdiPisa ViadellaRicercaScientifica ViaBuonarrotic Roma,Italy Pisa,Italy e-mail:[email protected].it e-mail:fl[email protected] SusannaTerracini AngusMacIntyre (Co-editorinChief) QueenMaryUniversityofLondon UniversitàdegliStudidiTorino SchoolofMathematicalSciences DipartimentodiMatematica“GiuseppePeano” MileEndRoad ViaCarloAlberto LondonENS,UnitedKingdom Torino,Italy e-mail:[email protected] e-mail:[email protected] GiuseppeMingione AdolfoBallester-Bollinches DipartimentodiMatematicaeInformatica Departmentd’Àlgebra UniversitàdegliStudidiParma FacultatdeMatemàtiques ParcoAreadelleScienze,/a(Campus) UniversitatdeValència Parma,Italy Dr.Moliner, e-mail:[email protected] Burjassot(València),Spain MarioPulvirenti e-mail:[email protected] DipartimentodiMatematica AnnalisaBuffa UniversitàdiRoma“LaSapienza” IMATI–C.N.R.Pavia P.leA.Moro ViaFerrata Roma,Italy Pavia,Italy e-mail:[email protected].it e-mail:[email protected] FulvioRicci LuciaCaporaso ScuolaNormaleSuperiorediPisa DipartimentodiMatematica PiazzadeiCavalieri UniversitàRomaTre Pisa,Italy LargoSanLeonardoMurialdo e-mail:[email protected] I-Roma,Italy ValentinoTosatti e-mail:[email protected].it NorthwesternUniversity FabrizioCatanese DepartmentofMathematics MathematischesInstitut SheridanRoad Universitätstraÿe Evanston,IL,USA Bayreuth,Germany e-mail:[email protected] e-mail:[email protected] CorinnaUlcigrai CorradoDeConcini ForschungsinstitutfürMathematik DipartimentodiMatematica HGG. UniversitàdiRoma“LaSapienza” Rämistrasse PiazzaleAldoMoro Zürich,Switzerland Roma,Italy e-mail:[email protected] e-mail:[email protected].it CamilloDeLellis InstitutfürMathematik UniversitätZürich Winterthurerstrasse CH-Zürich,Switzerland TheEditorialPolicycanbefound e-mail:[email protected] atthebackofthevolume. Claudia Bucur • Enrico Valdinoci Nonlocal Diffusion and Applications 123 ClaudiaBucur EnricoValdinoci DipartimentodiMatematica DipartimentodiMatematica FederigoEnriques FederigoEnriques UniversitaJdegliStudidiMilano UniversitaJdegliStudidiMilano Milano,Italy Milano,Italy ConsiglioNazionaledelleRicerche IstitutodiMatematicaApplicatae TecnologieInformaticheEnricoMagene Pavia,Italy WeierstraßInstitutfürAngewandte AnalysisundStochasitk Berlin,Germany UniversityofMelbourne SchoolofMathematicsandStatistics Victoria,Australia ISSN1862-9113 ISSN1862-9121 (electronic) LectureNotesoftheUnioneMatematicaItaliana ISBN978-3-319-28738-6 ISBN978-3-319-28739-3 (eBook) DOI10.1007/978-3-319-28739-3 LibraryofCongressControlNumber:2016934714 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface The purpose of these pages is to collect a set of notes that are a result of several talksandminicoursesdeliveredhereandtherein theworld(Milan,Cortona,Pisa, Roma, Santiago del Chile, Madrid,Bologna, Porquerolles,and Catania to name a few).Wewillpresentheresomemathematicalmodelsrelatedtononlocalequations, providingsomeintroductorymaterialandexamples. Ofcourse,thesenotesandtheresultspresenteddonotaimtobecomprehensive and cannot take into account all the material that would deserve to be included. Even a thorough introduction to nonlocal (or even just fractional) equations goes waybeyondthepurposeofthisbook. Using a metaphor with fine arts, we could say that the picture that we painted here is not even impressionistic, it is just naïf. Nevertheless, we hope that these pagesmaybeofsomehelptotheyoungresearchersofallageswhoarewillingto have a look at the exciting nonlocal scenario (and who are willing to tolerate the partialandincompletepointofviewofferedbythismodestobservationpoint). Milano,Italy ClaudiaBucur Milano,Italy EnricoValdinoci November2015 v Acknowledgments ItisapleasuretothankSerenaDipierro,RupertFrank,RichardMathar,Alexander Nazarov, Joaquim Serra, and Fernando Soria for very interesting and pleasant discussions. We are also indebted with all the participants of the seminars and minicoursesfromwhichthissetofnotesgeneratedforthenicefeedbackreceived, andwe hopethatthis work,thoughsomehowsketchyand informal,canbe useful tostimulatenewdiscussionsandfurtherdevelopthisrichandinterestingsubject. vii Contents 1 AProbabilisticMotivation.................................................. 1 1.1 TheRandomWalkwithArbitrarilyLongJumps..................... 2 1.2 APayoffModel......................................................... 4 2 AnIntroductiontotheFractionalLaplacian............................. 7 2.1 PreliminaryNotions.................................................... 7 2.2 FractionalSobolevInequalityandGeneralizedCoareaFormula .... 16 2.3 MaximumPrincipleandHarnackInequality.......................... 19 2.4 Ans-HarmonicFunction............................................... 24 2.5 AllFunctionsAreLocallys-HarmonicUptoaSmallError......... 29 2.6 AFunctionwithConstantFractionalLaplacianontheBall ......... 33 3 ExtensionProblems.......................................................... 39 3.1 WaterWaveModel ..................................................... 40 3.1.1 ApplicationtotheWaterWaves............................... 42 3.2 CrystalDislocation..................................................... 43 3.3 AnApproachtotheExtensionProblemviatheFourier Transform............................................................... 56 4 NonlocalPhaseTransitions ................................................. 67 4.1 TheFractionalAllen-CahnEquation.................................. 70 4.2 ANonlocalVersionofaConjecturebyDeGiorgi ................... 85 5 NonlocalMinimalSurfaces................................................. 97 5.1 Graphsands-MinimalSurfaces ....................................... 101 5.2 Non-existenceofSingularConesinDimension2.................... 111 5.3 BoundaryRegularity ................................................... 119 6 ANonlocalNonlinearStationarySchrödingerTypeEquation......... 127 6.1 FromtheNonlocalUncertaintyPrincipletoaFractional WeightedInequality.................................................... 136 ix