Logout succeed
Logout succeed. See you again!

IoT, Machine learning and Blockchain Technologies for Renewable Energy and Modern Hybrid Power Systems PDF
Preview IoT, Machine learning and Blockchain Technologies for Renewable Energy and Modern Hybrid Power Systems
IoT, Machine Learning and Blockchain Technologies for Renewable Energy and Modern Hybrid Power Systems RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE AND TECHNOLOGY SeriesEditors: K.C.CHEN,NationalTaiwanUniversity,Taipei,Taiwan and UniversityofSouthFlorida,USA SANDEEPSHUKLA,VirginiaTech,USA and IndianInstituteofTechnologyKanpur,India The“RiverPublishersSeriesinComputingandInformationScienceandTechnology”coversresearchwhichushers the21stCenturyintoanInternetandmultimediaera.Networkingsuggeststransportationofsuchmultimediacontents amongnodesincommunicationand/orcomputernetworks,tofacilitatetheultimateInternet. Theory,technologies,protocolsandstandards,applications/services,practiceandimplementationofwired/wireless The“RiverPublishersSeriesinComputingandInformationScienceandTechnology”coversresearchwhichushers the21stCenturyintoanInternetandmultimediaera.Networkingsuggeststransportationofsuchmultimediacontents amongnodesincommunicationand/orcomputernetworks,tofacilitatetheultimateInternet. Theory,technologies,protocolsandstandards,applications/services,practiceandimplementationofwired/wireless networkingareallwithinthescopeofthisseries.Basedonnetworkandcommunicationscience,wefurtherextendthe scopefor21stCenturylifethroughtheknowledgeinmachinelearning,embeddedsystems,cognitivescience,pattern recognition,quantum/biological/molecularcomputationandinformationprocessing,userbehaviorsandinterface,and applicationsacrosshealthcareandsociety.Bookspublishedintheseriesincluderesearchmonographs,editedvolumes, handbooksandtextbooks.Thebooksprovideprofessionals,researchers,educators,andadvancedstudentsinthefield withaninvaluableinsightintothelatestresearchanddevelopments. Topicsincludedintheseriesareasfollows:- • Artificialintelligence • CognitiveScienceandBrianScience • Communication/ComputerNetworkingTechnologiesandApplications • ComputationandInformationProcessing • ComputerArchitectures • Computernetworks • ComputerScience • EmbeddedSystems • Evolutionarycomputation • InformationModelling • InformationTheory • MachineIntelligence • Neuralcomputingandmachinelearning • ParallelandDistributedSystems • ProgrammingLanguages • ReconfigurableComputing • ResearchInformatics • Softcomputingtechniques • SoftwareDevelopment • SoftwareEngineering • SoftwareMaintenance Foralistofotherbooksinthisseries,visitwww.riverpublishers.com IoT, Machine Learning and Blockchain Technologies for Renewable Energy and Modern Hybrid Power Systems Editors C. Sharmeela AnnaUniversity,India P. Sanjeevikumar AarhusUniversity,Denmark P. Sivaraman VestasTechnologyR&DChennaiPvt.Ltd,India Meera Joseph IndependentInstituteofEducation,SouthAfrica River Publishers Published,soldanddistributedby: RiverPublishers Alsbjergvej10 9260Gistrup Denmark www.riverpublishers.com ISBN:978-87-7022-724-7(Hardback) 978-87-7022-711-7(Ebook) (cid:2)c2022RiverPublishers Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmittedinanyformorbyanymeans,mechanical, photocopying,recordingorotherwise,withoutpriorwrittenpermissionof thepublishers. Contents Preface xiii Acknowledgments xv ListofFigures xvii ListofTables xxiii ListofContributors xxv ListofAbbreviations xxix 1 IntroductiontoIoT 1 AsimMaharjanandSajuKhakurel 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 ApplicationsofIoT . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 DomesticApplications . . . . . . . . . . . . . . . . 6 1.3.2 ApplicationsinHealthcare . . . . . . . . . . . . . . 7 1.3.3 ApplicationsinE-commerce . . . . . . . . . . . . . 8 1.3.4 IndustrialApplications . . . . . . . . . . . . . . . . 9 1.3.5 ApplicationsinEnergy . . . . . . . . . . . . . . . . 10 1.4 TechnicalDetailsofIoT . . . . . . . . . . . . . . . . . . . 11 1.4.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 Actuators . . . . . . . . . . . . . . . . . . . . . . . 15 1.4.3 ProcessingTopologies . . . . . . . . . . . . . . . . 16 1.4.4 CommunicationTechnologies . . . . . . . . . . . . 18 1.5 RecentDevelopments . . . . . . . . . . . . . . . . . . . . . 20 1.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 v vi Contents 2 IoTanditsRequirementsforRenewableEnergyResources 29 D.Gunapriya,R.Sivakumar,andK.Sabareeshwaran 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 IoTanditsNecessity . . . . . . . . . . . . . . . . . 30 2.1.2 ChallengesinRES . . . . . . . . . . . . . . . . . . 30 2.1.3 IntegrationofIoTinRESandBenefits . . . . . . . . 32 2.2 IndustrialIoT . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.1 ArchitectureofIoT . . . . . . . . . . . . . . . . . . 33 2.2.2 IoTComponents . . . . . . . . . . . . . . . . . . . 34 2.3 RESandIoT . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.1 IoTControlsforRES . . . . . . . . . . . . . . . . . 36 2.3.2 ChallengesinIoTImplementation . . . . . . . . . . 38 2.4 ChallengesofIoTinEMSPost-implementation . . . . . . . 39 2.4.1 PrivacyIssues . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 SecurityConcerns . . . . . . . . . . . . . . . . . . 41 2.4.3 DataStorageIssues . . . . . . . . . . . . . . . . . . 43 2.4.3.1 Challengesindatamanagement . . . . . . 43 2.4.3.2 Challengesinfetchingdata . . . . . . . . 44 2.4.3.3 Challengesinallocation . . . . . . . . . . 44 2.5 SolutiontoIoTChallenges . . . . . . . . . . . . . . . . . . 45 2.5.1 BlockchainMethodology . . . . . . . . . . . . . . . 45 2.5.1.1 Blockchaintechnologyinfrastructure features . . . . . . . . . . . . . . . . . . . 47 2.5.1.2 Applicationdomainsofblockchain technology . . . . . . . . . . . . . . . . . 47 2.5.1.3 Challengesofblockchaintechnology . . . 47 2.5.2 CloudComputing . . . . . . . . . . . . . . . . . . . 48 2.5.2.1 Referencearchitecture . . . . . . . . . . . 49 2.5.2.2 Networkcommunicationandits challenge . . . . . . . . . . . . . . . . . . 51 2.5.2.3 Privacyandsecurity . . . . . . . . . . . . 51 2.5.2.4 Backgroundinformation . . . . . . . . . . 53 2.5.2.5 Bigdataanalytics . . . . . . . . . . . . . 53 2.5.2.6 Provisionofprogramquality . . . . . . . 53 2.5.2.7 IPv4addressinglimit . . . . . . . . . . . 54 2.5.2.8 Legalaspectsandsocialfacts . . . . . . . 55 2.5.2.9 Servicedetection . . . . . . . . . . . . . . 56 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Contents vii 3 PowerQualityMonitoringofLowVoltageDistributionSystem TowardSmartDistributionGridThroughIoT 61 P.Sivaraman,C.Sharmeela,S.Balaji,andP.Sanjeevikumar 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 IntroductiontoVariousPQCharacteristics . . . . . . . . . . 63 3.3 IntroductiontoIoT . . . . . . . . . . . . . . . . . . . . . . 64 3.4 SmartMonitoringusingIoTfortheLowVoltageDistribution System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5 PowerQualityMonitoringofLowVoltageDistribution System–CaseStudy . . . . . . . . . . . . . . . . . . . . . 67 3.5.1 Undervoltage . . . . . . . . . . . . . . . . . . . . . 69 3.5.2 Overvoltage . . . . . . . . . . . . . . . . . . . . . . 69 3.5.3 Interruption . . . . . . . . . . . . . . . . . . . . . . 71 3.5.4 OverloadinBranchCircuit . . . . . . . . . . . . . . 72 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 74 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 HealthMonitoringofaTransformerinaSmartDistribution SystemusingIoT 79 P.Sivaraman,C.Sharmeela,andP.Sanjeevikumar 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 IntroductiontotheTransformer . . . . . . . . . . . . . . . . 81 4.3 FailureoftheDistributionTransformer . . . . . . . . . . . . 82 4.4 TransformerHealthMonitoringSystemthroughIoT . . . . . 82 4.4.1 WindingandOilTemperatureSensor . . . . . . . . 83 4.4.2 OilLevelMonitoringSensor . . . . . . . . . . . . . 84 4.4.3 CurrentSensorandVoltageSensor . . . . . . . . . . 84 4.4.4 Microcontroller . . . . . . . . . . . . . . . . . . . . 85 4.4.5 LCDorMonitor . . . . . . . . . . . . . . . . . . . 85 4.4.6 CommunicationSystem . . . . . . . . . . . . . . . 85 4.4.7 CentralMonitoringandControl . . . . . . . . . . . 86 4.5 CaseStudy . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5 IntroductionToMachineLearningTechniques 93 SaniyaM.Ansari,RavindraR.Patil,RajnishKaurCalay, andMohamadY.Mustafa 5.1 WhyandWhatisMachineLearning? . . . . . . . . . . . . 93 viii Contents 5.1.1 PhrasesinMachineLearning . . . . . . . . . . . . . 94 5.1.2 StepsInvolvedinMachineLearningPractices . . . . 94 5.1.3 PropertiesofData. . . . . . . . . . . . . . . . . . . 94 5.1.4 Real-WorldApplicationsofMachineLearning . . . 95 5.2 ClassificationofMachineLearningTechniques . . . . . . . 96 5.2.1 SupervisedLearning . . . . . . . . . . . . . . . . . 96 5.2.1.1 Classification. . . . . . . . . . . . . . . . 97 5.2.1.2 Regression . . . . . . . . . . . . . . . . . 98 5.2.2 UnsupervisedLearning . . . . . . . . . . . . . . . . 99 5.2.2.1 Clustering . . . . . . . . . . . . . . . . . 99 5.2.2.2 Association . . . . . . . . . . . . . . . . 100 5.2.3 ReinforcementLearning . . . . . . . . . . . . . . . 100 5.2.3.1 Crucialtermsinreinforcement learning . . . . . . . . . . . . . . . . . . 101 5.2.3.2 Salientfeaturesofreinforcement learning . . . . . . . . . . . . . . . . . . 102 5.2.3.3 Typesofreinforcementlearning . . . . . . 102 5.2.3.4 Reinforcementlearningalgorithms . . . . 103 5.3 SomeCrucialAlgorithmicMathematicalModelsinMachine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 LogisticRegression . . . . . . . . . . . . . . . . . . 104 5.3.2 DecisionTrees . . . . . . . . . . . . . . . . . . . . 105 5.3.3 LinearRegression. . . . . . . . . . . . . . . . . . . 107 5.3.4 K-NearestNeighbors . . . . . . . . . . . . . . . . . 108 5.3.5 K-MeansClustering . . . . . . . . . . . . . . . . . 110 5.4 Pre-EminentPythonLibrariesIntendedforMachine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.1 HumanDetection(OpenCV,HoG,SVMwith Multi-Threading) . . . . . . . . . . . . . . . . . . . 113 5.4.2 InstagramFilters–(OpenCV,Matplotlib,NumPy) . 114 5.5 Machine Learning Techniques in State of Affairs of Power Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 117 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6 MachineLearningTechniquesforRenewable EnergyResources 121 K.Punitha,S.Anbarasi,andT.Balasubramanian 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Contents ix 6.2 OverviewofMachineLearning . . . . . . . . . . . . . . . . 126 6.3 DeepLearningArchitecture. . . . . . . . . . . . . . . . . . 128 6.4 LSTMNetworkBasedPrediction. . . . . . . . . . . . . . . 132 6.5 ConceptsofSolarPVanditsMPPTTechniques . . . . . . . 134 6.6 SimulationResultsandDiscussion . . . . . . . . . . . . . . 135 6.6.1 ModelingandPerformanceAnalysis . . . . . . . . . 135 6.6.2 PredictionorForecastingMethodology . . . . . . . 141 6.6.3 UtilizingPredictedValueinMPPTTechnique . . . . 143 6.7 ConclusionandFutureDirections . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7 ApplicationofOptimizationTechniqueinModernHybrid PowerSystems 149 D.Lakshmi,R.Zahira,C.N.Ravi,P.Sivaraman,G.Ezhilarasi, andC.Sharmeela 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.2 ModernPowerSystem . . . . . . . . . . . . . . . . . . . . 151 7.2.1 DeregulatedPowerSystem . . . . . . . . . . . . . . 152 7.2.2 ComponentsofDeregulation . . . . . . . . . . . . . 152 7.2.3 TypesofTransactions. . . . . . . . . . . . . . . . . 154 7.2.3.1 Bilateraltransactions . . . . . . . . . . . 154 7.2.3.2 DPMandAPF . . . . . . . . . . . . . . . 155 7.2.4 RenewableEnergySources . . . . . . . . . . . . . . 156 7.2.4.1 Doublyfedinductiongenerator . . . . . . 156 7.2.4.2 DFIGinderegulatedpowersystem . . . . 158 7.3 OptimizationTechniquesandProposedTechnique . . . . . . 161 7.3.1 Controllers . . . . . . . . . . . . . . . . . . . . . . 161 7.3.2 PIController . . . . . . . . . . . . . . . . . . . . . 161 7.3.3 ArtificialOptimizationAlgorithmforTuningPI . . . 162 7.3.3.1 Differentialevolution . . . . . . . . . . . 162 7.3.3.2 Flowerpollinationalgorithm . . . . . . . 163 7.3.3.3 Hybridalgorithm . . . . . . . . . . . . . 164 7.3.3.4 DesignofahybridDE-FPAalgorithm forLFC . . . . . . . . . . . . . . . . . . 165 7.4 SimulationResultsandDiscussion . . . . . . . . . . . . . . 165 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 167 References . . . . . . . . . . . . . . . . . . . . . . . . . . . 169