loading

Logout succeed

Logout succeed. See you again!

ebook img

Exact sampling hardness of Ising spin models PDF

file size1.5 MB

Preview Exact sampling hardness of Ising spin models

ExactsamplinghardnessofIsingspinmodels B.Fefferman,1 M.Foss-Feig,2,3,1 and A.V. Gorshkov3,1 1Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD 20742 USA 2United States Army Research Laboratory, Adelphi, MD 20783, USA 3Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20742 USA WestudythecomplexityofclassicallysamplingfromtheoutputdistributionofanIsingspinmodel,which canbeimplementednaturallyinavarietyofatomic,molecular,andopticalsystems.Inparticular,weconstructa specificexampleofanIsingHamiltonianthat—aftertimeevolutionstartingfromatrivialinitialstate—produces aparticularoutputconfigurationwithprobabilityverynearlyproportionaltothesquareofthepermanentofa matrixwitharbitraryintegerentries.InasimilarspirittoBosonSampling,theabilitytosampleclassicallyfrom theprobabilitydistributioninducedbytimeevolutionunderthisHamiltonianwouldimplyunlikelycomplexity 7 theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated 1 withaclassicalcomputer. PhysicalIsingspinsystemscapableofachievingproblem-sizeinstances(i.e. qubit 0 numbers) large enough so that classical sampling of the output distribution is classically difficult in practice 2 maybeachievableinthenearfuture. UnlikeBosonSampling,ourcurrentresultsonlyimplyhardnessofexact classical sampling, leaving open the important question of whether a much stronger approximate-sampling n hardnessresultholdsinthiscontext. AsreferencedinarecentpaperofBouland,Mancinska,andZhang[1], a ourresultcompletesthesamplinghardnessclassificationoftwo-qubitcommutingHamiltonians. J 1 1 I. INTRODUCTION A ] time B h p It is often taken for granted that quantum computers can J2,1 - efficiently perform certain computational tasks that classical t n computers cannot. But finding a quantum task that, on the z H= Ji,j�ˆix ⌧ˆxj a onehand,admitscompellingcomplexity-theoreticarguments Xi,j u against efficient classical simulation, and on the other hand y q x [ admits experimental demonstration with technology that is feasible in the near future, remains an important and chal- FIG. 1. Schematic of the model: (a) Spins in sublattice (red) 1 A lengingtaskinthefieldofquantuminformationscience. An arecoupledtospinsinsublattice (blue)viaIsingcouplingsσˆxτˆx v B i j extremely exciting line of work, starting with results of Ter- andallofthemstartoffin . Tolowestorderintime, thematrix 7 |↓(cid:105) 6 hal and DiVincenzo and Bremner, Jozsa, and Shepherd, has elementofthetimeevolutionoperatorbetweenaninitialstatewith 1 shownthatquantumcomputersarecapableofsamplingfrom allspinsintializedin|↓(cid:105)andafinalstatewithallqubitsin|↑(cid:105)receives 3 distributions that cannot be sampled exactly by randomized contributionsinwhicheachspinisflippedpreciselyonce(onesuch 0 contributingterm,betweenthespinonthesecondsiteof andthe classicalalgorithms[2,3]. TheBosonSamplingprotocol[4], A . firstspinof ,isshown. 1 proposedbyAaronsonandArkhipov,givesahardnessofsam- B 0 pling result that may be within reach for near-term quantum 7 experiments. Thebasicideaistosendphotonsthroughanet- 1 be done with high fidelity and relative ease, and the ability : workoflinearopticaldevices,arrangedinsuchawaythatthe to massively parallelize spin-spin interactions between large v probabilities of typical output configurations of the photons numbers of qubits is reasonably sophisticated; experiments i X areproportionaltothesquaresofpermanentsofmatriceswith have successfully implemented some simple instances of the r independentandGaussian-distributedrandomentries. Given Isingmodelwithsystemsizesrangingfromtens[9]tomany a reasonableassumptionsaboutthehardnessofcomputingper- hundreds of spins [10]. Moreover, recent developments in manentsofsuchmatrices,theabilitytoefficientlyclassically ion-trappingexperimentsraisetheexcitingprospectofimple- sample from any distribution even close (in total variation mentingarbitraryIsinginteractiongraphsinsystemsof(po- distance)tothisdistributionwouldimplyextremelyunlikely tentially)manytensoftrappedions[11].Forthisreason,find- complexitytheoreticconsequences. ingresultsanalogoustoBosonSamplingforsimplespinmod- Anumberofproof-of-principleexperimentsimplementing elsishighlydesirable,andpotentiallyaffordsasimplerroute BosonSampling have already been carried out [5–8]. How- towardstheexperimentaldemonstrationofanefficientquan- ever, a remaining bottleneck to producing an experimentally tum task that, under extremely plausible assumptions about convincing demonstration of BosonSampling is the techni- classical complexity theory, cannot be efficiently performed cal difficulty of building linear-optical systems that are large byaclassicalsystem[3,12]. enoughandcleanenoughtorealizeBosonSamplinginstances Our goal in this manuscript is to show that the dynamics for which classical sampling is actually difficult. By com- ofanexperimentallyimplementablecommutingspinmodel— parison,statepreparationandreadoutofindividualspinscan theIsingmodelwithnotransversefield—caninduceanout- 2 putdistributionoverthespinstatesthatishardtosamplefrom anexcitedhyperfineleveloftheelectronicground-stateman- classically. Thegeneralstrategy,whichwillbeelaboratedon ifold or a dipole-forbidden optical excitation). The Ising in- below, is to divide a set of Ising spins into two mutually in- teractionscanthenbeimplementedviaaspatially-structured teracting registers, each having N spins (see Fig.1). The N Mølmer-Sørenseninteraction[11,15,16]. spins in the first and second register can be placed in corre- Weconsideraquantumquenchinwhichthesystemisini- spondencewiththeN rowandcolumnlabels,respectively,of tializedattimet=0withallofthespins(inbothregisters)in an N N matrix J; each of the N2 pairwise Ising couplings thespin-downstatealongthez-direction, × J between a spin (i) in one register and a spin (j) in the i,j otherisamatrixelementof J. Byinitializingthesystemina |ψ(0)(cid:105)= |↓(cid:105)i |↓(cid:105)j. (2) spatiallyhomogeneousproductstateandthenlettingitevolve (cid:79)i∈A (cid:79)j∈B underIsinginteractionsforashorttime,itcanbeshownthat WethenallowthesystemtoevolveundertheHamiltonianin asingleprobabilityoftheoutputdistributioninducedbymea- Eq.(1)foratimet. surementisproportionaltothesquareofthepermanentof J, plus an o(1) correction. This is enough, using a tool known as“Stockmeyercounting”[13],toimplyahardnessof“exact III. OUTPUTDISTRIBUTION sampling”result: noefficientclassicalrandomizedalgorithm cansamplefromexactlythisdistribution, underaubiquitous After evolution for a time t under the action of , mea- H hardness assumption (namely, that the Polynomial-time Hi- surementinthezbasissamplesfromtheinducedprobability erarchy does not collapse). Note that in a recent paper [12], distribution BosonSamplingwasdirectlygeneralizedtothecontextofspin Hamiltonians. However, our work encounters the permanent Pt(σ1,...,σN,τ1,...,τN) in a fundamentally different way; an important difference is = σ ,...,σ ,τ ,...,τ exp( i t) ,..., 2, (3) that our results do not rely on a “diluteness criterion”, and |(cid:104) 1 N 1 N| −H |↓ ↓(cid:105)| thus N is set by—as opposed to much less than—the num- whereσj,τj = , . Weareinterestedinjustonesuchproba- ↓ ↑ berofphysicalqubits. Muchlikeother“exactsampling”re- bility, sults,ourresultalsodemonstrateshardnesstoclassicallysam- P P( ,..., )= ,..., exp( it ) ,..., 2 M 2, plefromanydistributioninwhichallprobabilitiesarewithin t ≡ t ↑ ↑ |(cid:104)↑ ↑| − H |↓ ↓(cid:105)| ≡| t| aconstantmultiplicativefactoroftheidealquantumdistribu- toendinthestatewithallspinsinbothregisterspointingup. tion. However, unlike BosonSampling, a recent proposal of BywritinganindividualtermintheHamiltonianas Bremner, MontanaroandShepherd(sometimescalled“IQP” sampling),andQuantumFourierSampling,itisnotyetclear σˆixτˆxj =σˆ+iτˆ+j +σˆ+iτˆ−j +σˆ−iτˆ+j +σˆ−iτˆ−j, (4) whether the distributions we consider can be used to show it is straightforward to see that repeated applications of , an “approximate-sampling” hardness result [3, 4, 14]. This H and thus time evolution, generates population in all possible would show something far stronger: there is no classical al- spinstatesinthezbasis. Expandinge i tasapowerseriesin gorithmthatcansamplefromanydistributioninversepolyno- −H time, the lowest-order in time non-vanishing contribution to mialintotalvariationdistancefromtheidealquantumdistri- thematrixelement M = ,..., exp( it ) ,..., arises bution. t (cid:104)↑ ↑| − H |↓ ↓(cid:105) at order tN, because every spin needs to be flipped at least once. The contributing terms contain exactly N powers of operatorsσˆ+τˆ+, withnorepetitionsoftheindicesiand j, so II. THEMODEL i j that each qubit gets flipped from to exactly one time; |↓(cid:105) |↑(cid:105) see Fig. 2 for an illustration of such a term for N = 3. It is The model we consider consists of 2N spin-1/2 particles, straightforward to show that, to order tN, the matrix element whichwedivideintotwosublatticesofNspinseach,denoted M isgivenby t and (blue and red spins in Fig.1). We consider quench AdynamiBcs under an Ising Hamiltonian with exclusively two- ( it)N N M = − N! J +O(tN+2) body inter-sublattice interactions (but no interactions within t N! × σ(j),j eithersublattice),whichcantakearbitraryintegervalues, (cid:88)σ (cid:89)j=1 =( it)NPer(J)+O(tN+2), (5) − = J σˆxτˆx. (1) H i,j i j wherethesummationisoverallpermutationsσoftheintegers (cid:88)i,j i=1,...,N. Asaresult,anddefiningP = Per(J)2,wehave | | Here,Paulioperatorsσˆ actonthespinsofsublatticeA,while Pt =t2N P +O(t2) . (6) Paulioperatorsτˆ actonthespinsofsublattice . Thesespins B could be, for example, two subsets of ions in a Paul trap, Wenextaimtoplaceaconst(cid:0)raintonhow(cid:1) tmustscalewithN where the and are, respectively, the electronic ground inordertoensurethattheO(t2)additiveerrortothepermanent |↓(cid:105) |↑(cid:105) state and some long-lived metastable state (in general either iso(1)withrespecttothesystemsizeN. 3 A where tim e B η (2 [M(0)δM]+ δM 2)/t2N t ≡ (cid:60) t t | t| δM (2M(0) + δM )/t2N. (11) ≤| t| | t | | t| Fornotationalsimplicity,herewewillassumethattheentries of J aredrawnfromtheset 1,0,1 ;notethatnothingabout {− } our argument would change if arbitrary integers were used, J1,2�ˆ+1⌧ˆ+2 J3,1�ˆ+3⌧ˆ+1 J2,3�ˆ+2⌧ˆ+3 exceptthatthetimet wouldberescaledintheboundsbelow by max(J ). Using ,..., m ,..., N2m σˆx 2m = i,j (cid:104)↑ ↑|H |↓ ↓(cid:105) ≤ (cid:107) (cid:107) FIG.2. Exampleofasingletermcontributingtothematrixelement N2m, M(α) can be bounded as M(α) (N2t)N+2α/(N +2α)!. Mt at lowest order in time (tN, here with N = 3). Here, all spins Therefotre, | t | ≤ areflippedfromdowntoupbyaparticularpairingoffofthespins betweenthe and sublattices.Thedepictedprocesscontributesa (N2t)N term(J1,2×JA3,1×JB2,3)×(t3/3!)toMt. Thesetofallpossibleways |Mt(0)|≤ N! , (12) topairthespinsinsublattice withthespinsinsublattice isin one-to-onecorrespondencewitAhtermsinthepermanentoftheBmatrix δM (N2t)N ∞ (N4t2)α 2(N2t)N(N4t2). (13) t Ji,j,andthusMtisproportionaltothispermanent. | |≤ N! (cid:88)α=1 ≤ N! ThefinalinequalityinEq.(13)isvalidfort2 1/(2N4), be- ≤ IV. HIGHERORDERSINTIME cause 0 ≤ ∞α=1xα ≤ 2x whenever 0 ≤ x ≤ 1/2. Plugging Eqs.(12,13)intoEq.(11)leadsto (cid:80) As discussed above, the lowest-order in time contribution N4N to the matrix element Mt comes at order N. It is not hard to η 4N4t2 1+N4t2 (14) seethatallothercontributingtermsoccuratordermsuchthat t ≤ (N!)2 (cid:18) (cid:19) m N is a positive even integer. In particular, take N to N4N be−the number of times an operator σˆ+iτˆ−j occurs insid+e−the ≤6N4t2(N!)2 ≤t2poly(N)e2N(lnN+1), (15) matrix element, and similarly for N , N , and N , such + ++ that N + N + N + N = m.− Since we nee−d−to flip withthefinalinequalityobtainedbyStirling’sapproximation. ++ + + the same num−b−er of q−ubits−in both registers, we must have Itfollowsimmediatelythatηt =o(1)isguaranteedaslongas N = N . Also,thetotalnumberofflippedqubitsisequal to+2−(N −+N ), and since all qubits need to be flipped, we t=o(e−2NlnN). (16) ++ − −− have N N = N. Now,defining p(n)tobetheparityof ++ − −− theintegern,wehave V. HARDNESSOFSAMPLING p(m)= p(N +N +2N ) ++ + −− − Here we prove our main theorem, establishing a very un- = p(N +N ) ++ likely complexity theoretic consequence which would arise −− = p(N++ N ) naturallyfromthepresumedexistenceofaclassicalalgorithm − −− = P(N), (7) thatsamplesexactlyfromtheoutputdistributiondescribedin thepriorsections. Similarargumentstotheonesketchedhere whichshowsthatm Nisaneveninteger.Thematrixelement areimplicitinotherworksonquantumhardnessofsampling − inquestioncanthereforebeexpandedas resultsstartingwiththeBosonSamplingproposal[4]. We first begin with a very brief overview of the computa- M = ∞ ,..., (−itH)N+2α ,..., ∞ M(α), (8) tional complexity theoretic components necessary to under- t (cid:104)↑ ↑| (N+2α)! |↓ ↓(cid:105)≡ t standthishardnessofsamplingresult. Computingexactlythe (cid:88)α=0 (cid:88)α=0 permanent of an N N matrix X with integer entries is as × hardascomputingthenumberofsatisfyingassignmentstoa andfromabovewehave booleanformula. Wethereforesayitisa#P-hardproblem,as M(0) =( it)NPer(J). (9) establishedbyValiant[17]. When X hasnonnegativeinteger t − entriesthisproblemisalsoin#P. Defining δMt = ∞α=1Mt(α), such that Mt = Mt(0) +δMt, we comFopruotiunrgpmuruplotispelsic,awtievweielsltbimeaintetesrteosttehdeipnetrhmeacnoemnpt.leWxietysaoyf canwrite (cid:80) analgorithmA efficientlycomputesamultiplicativeestimate P = M(0)2+2 [M(0)δM]+ δM 2 to a function f if, given input x, the output of A is within a t | t | (cid:60) t t | t| 1 (cid:15)multiplicativefactorof f(x)intimepolynomialinNand =t2N P +ηt , (10) 1/±(cid:15). AfamousresultofJerrum,SinclairandVigodagivesan (cid:0) (cid:1) 4 algorithm for efficiently computing a multiplicative estimate trivially diagonalized. However, just as with non-interacting to the permanent of a matrix with nonnegative entries [18]. bosons, this point of view stems from a restricted notion of Ontheotherhand,itcanbeshownusingabinarysearchand whatitmeansto“simulate”aquantumsystem. Asinthecase paddingargumentthatcomputingsuchanestimatetotheper- of non-interacting bosons, it is indeed classically efficient to manent(oreventhesquareofthepermanent)ofamatrixwith compute low-order correlation functions of operators in the general integer entries is in fact #P-hard (see e.g., [4, 19]). modelwestudy[21,22],butsamplingfromtheoutputdistri- Therefore computing these estimates are as hard as comput- butionissimplyamoregeneral(andlesstrivial)task. ing the permanent exactly. How powerful is #P? We know Another interesting motivation for our result comes from from Toda’s Theorem that any problem in the Polynomial- thedesiretoclassifyalltwo-qubitcommutingHamiltonians. timehierarchy,orPH,canbesolvedusingtheabilitytosolve Suppose we start in a computational basis state of n qubits, a#P-hardproblem[20]. Beingabitmoreformal,Toda’sthe- and can apply a fixed two-qubit Hamiltonian to any pair of oremtellsusthatPH P#P. qubits. A recent result of Bouland, Mancinska, and Zhang ⊆ Now,foranyN N matrixXdefine X tobetheoutcome gaveahardnessofsamplingclassificationforthismodel[1]. × D distribution from Section III that arises from starting in the Theyprove,inallcasesexcepttheoneweconsider(inwhich ,..., state, evolving for a particular time t under the ac- the two qubit Hamiltonian is X X) that the corresponding t|↓ionof↓th(cid:105)eHamiltonianfromEq.(1)withcouplingconstants sampling task is classically hard⊗, as long as the commuting Ji,j set to the entries of X, and measuring in the z basis. As Hamiltonian is capable of generating entanglement from a showninSectionsIIIandIV,theprobabilityofobservingthe computationalbasisstate. Otherwise,theoutputisinaprod- ,..., outcome at time t is proportional to the square of uct state and clearly classically simulable. Thus our hard- |↑ ↑(cid:105) the permanent of X plus an o(1) correction, provided that t ness result completes the sampling hardness classification of ischosentobeo(e−2NlnN). Noticethatthisprobabilityisex- thecompleteclassoftwo-qubitcommutingHamiltonians(see ponentially small. Therefore, to get any reasonable estimate theirpaperforadditionaldetails[1]). byrepeatedsamplingwewouldneedanexponentialnumber of samples. Indeed, this does not imply an efficient quan- tumalgorithmforcomputingthepermanent. Nonetheless,we can use the fact that a single exponentially small amplitude VII. ACKNOWLEDGMENTS is proportional to the permanent to argue about the classical intractabilityofsamplingfromthisdistribution. Supposewehaveanefficientclassicalsamplerwhichsam- WethankA.DeshpandeandA.Boulandforhelpfuldiscus- plesfromthesamedistribution. Wedefinethistobeaneffi- sions. WealsothankA.Bouland,LauraMancinskaandXue cientrandomizedalgorithmthattakesasinputanN N inte- Zhangforsharinganearlyversionoftheirresults. A.V.G.ac- germatrix X andoutputsasamplefromthedistribu×tion . knowledges support by ARL CDQI, ARO MURI, NSF QIS, X D ARO, NSF PFC at JQI, and AFOSR. This material is based AclassicresultofStockmeyergivesanalgorithmforcomput- upon work supported by, or in part by, the U. S. Army Re- ing a multiplicative estimate to the probability of any given outcomeofanefficientclassicalsamplerinthethirdlevelof searchLaboratoryandtheU.S.ArmyResearchOfficeunder the PH, or Σ [13]. Using this result, together with the pre- contract/grantnumber025989-001. 3 sumedexistenceofanefficientclassicalsamplerforourquan- tumdistribution,wecancomputeamultiplicativeestimateto the square of the permanent of an arbitrary integer matrix in the third level of the PH. As mentioned above, this is a #P- [1] A.Bouland,L.Mancinska, andX.Zhang,in31stConference hardproblem. Thistellsuswecansolveanyproblemin#Pin on Computational Complexity, CCC 2016, May 29 to June 1, thethirdlevelofthePolynomial-timehierarchy, orformally, 2016,Tokyo,Japan(2016)pp.28:1–28:33. thatP#P Σ3. CombiningthiswithToda’stheorem,wehave [2] B.M.TerhalandD.P.DiVincenzo,QuantumInformationand ⊆ thatPH P#P Σ ,andsotheentirePolynomial-timeHier- Computation4,134(2004). archyco⊆llapses⊆tot3hethirdlevel,asclaimed. Therefore,itis [3] M.J.Bremner, R.Jozsa, andD.J.Shepherd,Proceedingsof the Royal Society of London A: Mathematical, Physical and veryunlikelythatanefficientclassicalsamplerforthedistri- EngineeringSciences467,459(2010). butionwithprobabilitiesgivenbyEq.(3)exists. [4] S. Aaronson and A. Arkhipov, Theory of Computing 9, 143 (2013). [5] M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, VI. DISCUSSIONANDIMPLICATIONS S.Aaronson,T.C.Ralph, andA.G.White,Science339,794 (2013). [6] J.B.Spring, B.J.Metcalf, P.C.Humphreys, W.S.Koltham- These results extend several key ideas of BosonSampling mer,X.-M.Jin,M.Barbieri,A.Datta,N.Thomas-Peter,N.K. to the context of spin dynamics under Ising spin Hamiltoni- Langford,D.Kundys,J.C.Gates,B.J.Smith,P.G.R.Smith, ans. Just like non-interacting bosons, the Ising model with- andI.A.Walmsley,Science339,798(2013). out a transverse field is often viewed—from the perspective [7] M.Tillmann,B.Dakic,R.Heilmann,S.Nolte,A.Szameit, and ofmany-bodyquantumphysics—tobetrivial,sinceitcanbe P.Walther,Nat.Photon7,540(2013). 5 [8] A.Crespi,R.Osellame,R.Ramponi,D.J.Brod,E.F.Galvao, (TQC2016),LeibnizInternationalProceedingsinInformatics N.Spagnolo,C.Vitelli,E.Maiorino,P.Mataloni, andF.Scia- (LIPIcs), Vol.61,editedbyA.Broadbent(SchlossDagstuhl– rrino,Nat.Photon7,545(2013). Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016) [9] P.Richerme,Z.-X.Gong,A.Lee,C.Senko,J.Smith,M.Foss- pp.1:1–1:19. Feig, S.Michalakis, A.V.Gorshkov, andC.Monroe,Nature [15] K.MølmerandA.Sørensen,Phys.Rev.Lett.82,1835(1999). 511,198(2014). [16] S. Korenblit, D. Kafri, W. C. Campbell, R. Islam, E. E. Ed- [10] J.G.Bohnet, B.C.Sawyer, J.W.Britton, M.L.Wall, A.M. wards, Z.-X. Gong, G.-D. Lin, L.-M. Duan, J. Kim, K. Kim, Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297 andC.Monroe,NewJ.Phys.14,095024(2012). (2016). [17] L.G.Valiant,TheoreticalComputerScience8,189(1979). [11] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, [18] M.Jerrum,A.Sinclair, andE.Vigoda,J.ACM51,671(2004). K.Wright, andC.Monroe,Nature536,63(2016). [19] S.Aaronson,inProc.R.Soc.A,Vol.467(TheRoyalSociety, [12] B. Peropadre, A. Aspuru-Guzik, and J. J. Garci-Ripoll, 2011)pp.3393–3405. arXiv:1509.02703 (2015). [20] S.Toda,SIAMJ.Comput.20,865(1991). [13] L.J.Stockmeyer,SIAMJ.Comput.14,849(1985). [21] M.vandenWorm,B.C.Sawyer,J.J.Bollinger, andM.Kast- [14] B.FeffermanandC.Umans,in11thConferenceontheTheory ner,NewJ.Phys.15,083007(2013). of Quantum Computation, Communication and Cryptography [22] M.Foss-Feig,K.R.A.Hazzard,J.J.Bollinger, andA.M.Rey, Phys.Rev.A87,042101(2013).

See more

The list of books you might like