loading

Logout succeed

Logout succeed. See you again!

ebook img

Euler sums of generalized hyperharmonic numbers PDF

file size0.14 MB

Preview Euler sums of generalized hyperharmonic numbers

Euler sums of generalized hyperharmonic numbers Ce Xu∗ School of Mathematical Sciences, Xiamen University 7 Xiamen 361005,P.R. China 1 0 2 n (m) Abstract Thegeneralizedhyperharmonicnumbersh (k)aredefinedbymeansofthemultiple a n (m) J harmonicnumbers. Weshowthatthehyperharmonicnumbersh (k)satisfycertain recurrence n 2 relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: ] T N ∞ h(m)(k) n S(k,m;p) := (p ≥ m+1, k = 1,2,3) . np h n=1 t X a m can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil (2015) [11] and Mezo¨ (2010) [17]. [ Some interesting new consequences and illustrative examples are considered. 1 v Keywords Euler sums; generalized hyperharmonic numbers; harmonic numbers; Riemann zeta 1 function; Stirling numbers. 9 3 AMS Subject Classifications (2010): 11B73; 11B83; 11M06; 11M32; 11M99 0 0 . 1 1 Introduction 0 7 1 Let N := {1,2,3,...} be the set of natural numbers, and N0 := N∪{0}, N\{1} := {2,3,4,···}. : Hyperharmonic numbers and their generalizations are classically defined by v i X 1 h(m)(k) := , (1.1) r n n n ···n a 1≤nm+kX−1<···<nm m m+1 m+k−1 ≤nm−1≤···≤n1≤n 1 h(m)(1) ≡ h(m) := , (1.2) n n n m 1≤nm≤X···≤n1≤n where k,m,n ∈ N and for any n < k, we set h(m)(k) := 0. When k = 1 in (1.1), the number n (m) (m) h (1) ≡ h is called classical hyperharmonic number (see [8–11, 17]). In special, the hy- n n (1) perharmonic number h is simply called classical harmonic number, which is the sum of the n reciprocals of the first n natural numbers:: n 1 h(1) ≡ H := . n n k k=1 X ∗ Corresponding author. Email: [email protected] (C. Xu) 1 (m) Moreover, in [17], Mezo¨ and Dil shown that the h can be expressed by binomial coefficients n and classical harmonic numbers: n+m−1 h(m) = (H −H ). n m−1 n+m−1 m−1 (cid:18) (cid:19) (k) The n-th generalized harmonic numbers of order k, denoted by H , is defined by n n 1 H(k) := , n,k ∈ N, (1.3) n jk j=1 X (k) (1) where the empty sum H is conventionally understood to be zero, and H ≡ H . The limit 0 n n as n tends to infinity exists if k > 1. In the limit of n → ∞, the generalized harmonic number converges to the Riemann zeta value: lim H(k) =ζ(k), ℜ(k) >1, k ∈ N, n n→∞ where the Riemann zeta function is defined by ∞ 1 ζ(s):= ,ℜ(s) > 1. (1.4) ns n=1 X In general, for r ∈ N, s := (s ,s ,...,s ) ∈ (N)r, and a non-negative integer n, the multiple 1 2 r harmonic number is defined by 1 H(s1,s2,···,sr) := . (1.5) n ns1ns2···nsr 1≤nr<nrX−1<···<n1≤n 1 2 r (s) (∅) By convention, we put H = 0, if n < r, and H = 1. The limit cases of multiple harmonic n n numbers give rise to multiple zeta values: ζ(s ,s ,··· ,s ) = lim H(s1,s2,···,sr) 1 2 r n n→∞ defined for s ,s ,...,s ≥ 1 and s ≥ 2 to ensure convergence of the series. Here s +···+s is 2 3 r 1 1 r calledtheweightandristhemultiplicity. Tosimplifythereadingofsuchformulas,whenastring of arguments is repeated an exponent is used. In other words, we treat string multiplication as concatenation. For example, 1,··· ,1 2,··· ,2,3,··· ,3     H r  = H({1}r), H p r  = H({2}p,{3}r). n n n n | {z } | {z }| {z } (m) With this notation, then the definition of hyperharmonic number h (k) of formula (1.1) can n be rewritten as ({1}k−1) H h(m)(k):= nm−1 . (1.6) n n m 1≤nm≤nmX−1≤···≤n1≤n The subject of this paper is Euler-type sums S(k,m;p), which is the infinite sum whose general term is a productof hyperharmonicnumbersand a power of n−1. Here, p > m is both necessary 2 and sufficient for the sum S(k,m;p) to converge. The classical linear Euler sum is defined by ([12]) ∞ (p) H S := n , p ∈ N,q ∈ N\{1}. (1.7) p,q nq n=1 X The number w = p+q is defined as the weight of S . The evaluation of S in terms of values p,q p,q of Riemann zeta function at positive integers is known when p = 1, p = q, (p,q) = (2,4),(4,2) or p+q is odd (see [1, 3, 6, 12]). For example, Euler discovered the following formula ∞ k−2 H 1 n S = = (k+2)ζ(k+1)− ζ(k−i)ζ(i+1) . (1.8) 1,k nk 2 ( ) n=1 i=1 X X RelatedserieswerestudiedbyMezo¨in[18],Sofo[20]andXu.etal[21,24],forinstance. Similarly, it has been discovered in the course of the years that many Euler type sums S(k,m;p) admit expressions involving finitely the zeta values, that is to say values of the Riemann zeta function at the positive integer arguments, for more details, see for instance [11, 17]. For example, Dil and Boyadzhiev [11] gave explicit reductions to zeta values and (unsigned) Stirling numbers of the first kind for all sums S(k,m;p) with k = 1. Here the (unsigned) Stirling number of the n first kind is defined by [8, 15] k (cid:20) (cid:21) n x x n+1 n!x(1+x) 1+ ··· 1+ = xk+1, (1.9) 2 n k+1 (cid:16) (cid:17) (cid:16) (cid:17) Xk=0(cid:20) (cid:21) n n 0 0 with = 0, if n < k and = = 0, = 1, or equivalently, by the generating k 0 k 0 (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) function: ∞ n xn logk(1−x) = (−1)kk! , x ∈ [−1,1). (1.10) k n! n=1(cid:20) (cid:21) X n Moreover, the (unsigned) Stirling numbers of the first kind satisfy a recurrence relation in k (cid:20) (cid:21) the form n n−1 n−1 = +(n−1) . (1.11) k k−1 k (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) n By the definition of , we see that we may rewrite (1.7) as k (cid:20) (cid:21) n n n+1 x xk = n!exp ln 1+ k+1  j  Xk=0(cid:20) (cid:21) Xj=1 (cid:18) (cid:19)  n ∞ xk = n!exp (−1)k−1  kjk Xj=1Xk=1  ∞ H(k)xk = n!exp (−1)k−1 n . k ( ) k=1 X 3 n Therefore, we know that is a rational linear combination of products of harmonic numbers. k (cid:20) (cid:21) Moreover, we deduce the following identities n n n (n−1)! = (n−1)!, = (n−1)!H , = H2 −H(2) , 1 2 n−1 3 2 n−1 n−1 (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) h i n (n−1)! = H3 −3H H(2) +2H(3) , 4 6 n−1 n−1 n−1 n−1 (cid:20) (cid:21) h i n (n−1)! = H4 −6H(4) −6H2 H(2) +3(H(2) )2+8H H(3) . 5 24 n−1 n−1 n−1 n−1 n−1 n−1 n−1 (cid:20) (cid:21) h i In this paper we are interested in Euler-type sums with hyperharmonic numbers S(k,m;p). Such series could be of interest in analytic number theory. We will prove that the generalized (m) hyperharmonic number h (k) can be expressed as a rational linear combination of products n of harmonic numbers. Furthermore, we also provide an explicit evaluation of S(k,m;p) with k = 2,3 in a closed form in terms of zeta values and Stirling numbers of the first kind. The results which we present here can be seen as an extension of Mezo¨’s and Dil’s work. 2 Main Theorems and Proof (m) In this section, we will show that the hyperharmonic number h (k) is expressible in terms of n harmonic numbers and give recurrence formula. We need the following lemma. Lemma 2.1 For positive integers n and k, then the following identity holds: n ({1}k−1) = (n−1)!H . (2.1) k n−1 (cid:20) (cid:21) Proof. By considering the generating function (1.10), we know that we need to prove the following identity logk(1−x)= (−1)kk! ∞ H({1}k−1)xn. (2.2) n−1 n n=1 X To prove the identity we proceed by induction on k. Obviously, it is valid for k = 1. For k > 1 we use the integral identity x logk(1−t) logk+1(1−x)=−(k+1) dt 1−t Z 0 and apply the induction hypothesis, by using Cauchy product of power series, we arrive at x logk(1−t) logk+1(1−x)=−(k+1) dt 1−t Z 0 ∞ n ({1}k−1) 1 H = (−1)k+1(k+1)! i−1 xn+1 n+1 i n=1 i=1 X X 4 ∞ ({1}k) H = (−1)k+1(k+1)! n xn+1. n+1 n=1 X ({1}k) Nothing that H = 0 when n < k. Hence, we can deduce (2.2) holds. Thus, comparing the n coefficients of xn in (1.10) and (2.2), we obtain formula (2.1). The proof of lemma 2.1 is thus completed. (cid:3) (m) By using(1.6) and(2.2), we findthat thegenerating functionof hyperharmonicnumberh (k) n is given as ∞ (−1)k logk(1−z) h(m)(k)zn = , z ∈ [−1,1). (2.3) n k! (1−z)m n=1 X On the other hand, we note that the function on the right hand side of (2.3) is equal to (−1)k logk(1−z) 1 ∂k 1 = lim (k,m ∈ N ). (2.4) k! (1−z)m k! x→m∂xk (1−z)x 0 (cid:18) (cid:19) Therefore, the relations (2.3) and (2.4) yield the following result: ∞ 1 ∂k 1 h(m)(k)zn = lim . (2.5) n k! x→m∂xk (1−z)x n=1 (cid:18) (cid:19) X Moreover, we know that the generating function of (1−z)−x is given as ∞ 1 (x) = nzn, z ∈(−1,1), (2.6) x (1−z) n! n=0 X where (x) represents the Pochhammer symbol (or the shifted factorial) given by n (x) := x(x+1)···(x+n−1), (2.7) n with (x) := 1. Hence, upon differentiating both members of (2.6) k times with respect to x 0 then setting x = m, and combining (2.5), we readily arrive at the following relationship: 1 ∂k(x) h(m)(k) = lim n, k ∈ N. (2.8) n k!n!x→m ∂xk By convention, from (2.8), we define that 1 m+n−1 h(m)(0) := (x) = . (2.9) n n! m m−1 (cid:18) (cid:19) ∂k(x) By simple calculation, the n satisfy a recurrence relation in the form ∂xk ∂k(x) k−1 k−1 ∂i(x) n = n ψ(m−k−1)(x+n)−ψ(m−k−1)(x) , k ∈ N. (2.10) ∂xk i ∂xi Xi=0(cid:18) (cid:19) h i Here ψ(m)(x) stands for the polygamma function of order m defined as the (m+1)th derivative of the logarithm of the gamma function: dm dm ψ(m)(x) := ψ(x)= logΓ(x), dxm dxm 5 Thus Γ′(x) ψ(0)(x) = ψ(x) = Γ(x) holds where ψ(x) is the digamma function and Γ(x) is the gamma function. ψ(m)(x) satisfy the following relations ∞ 1 1 ψ(z) = −γ+ − , z ∈/ N− := {0,−1,−2...}, n+1 n+z 0 n=0(cid:18) (cid:19) X ∞ ψ(n)(z) = (−1)n+1n! 1/(z+k)n+1,n ∈ N, k=0 X 1 1 1 ψ(x+n) = + +···+ +ψ(x), n ∈ N. x x+1 x+n−1 Hence, combining (2.8), (2.9) and (2.10), we obtain the recurrence relation (−1)k−1 k−1 h(m)(k) = (−1)ih(m)(i) H(k−i) −H(k−i) . (2.11) n k n m+n−1 m−1 Xi=0 n o (m) By (2.11), we give the following description of hyperharmonic number h (k). n (m) Theorem 2.2 For positive integers n and k, then the hyperharmonic number h (k) can be n expressed in terms of ordinary harmonic numbers. For example, setting m = 1,2,3,4 in the above equation (2.11) we obtain n+m−1 h(m)(1) = (H −H ), (2.12) n m−1 n+m−1 m−1 (cid:18) (cid:19) 1 n+m−1 h(m)(2) = (H −H )2− H(2) −H(2) , (2.13) n 2 m−1 n+m−1 m−1 n+m−1 m−1 (cid:18) (cid:19) n (cid:16) (cid:17)o h(m)(3) = 1 n+m−1 (Hn+m−1−Hm−1)3+2 Hn(3+)m−1−Hm(3−)1 , (2.14) n 3! m−1 −3(H −H ) H(cid:16)(2) −H(2) (cid:17) (cid:18) (cid:19) n+m−1 m−1 n+m−1 m−1  (H −H )4 (cid:16) (cid:17)  n+m−1 m−1  2 (2) (2) (4) (4) 1 n+m−1 +3 Hn+m−1−Hm−1 −6 Hn+m−1−Hm−1  h(m)(4) =  . (2.15) n 4! (cid:18) m−1 (cid:19)−6(cid:16)(Hn+m−1−Hm−1)(cid:17)2 Hn(2+(cid:16))m−1−Hm(2−)1 (cid:17) +8(H −H ) (cid:16)H(3) −H(3) (cid:17) n+m−1 m−1 n+m−1 m−1      (cid:16) (cid:17)    By replacing x by n and n by rin (1.9), we deduce that  r+1 n+r 1 r+1 = nk−1. (2.16) r r! k (cid:18) (cid:19) k=1(cid:20) (cid:21) X Therefore, the relations (2.13), (2.14) and (2.16) yield the following results 1 n+r h(r+1)(2) = (H −H )2− H(2) −H(2) n 2 r n+r r n+r r (cid:18) (cid:19) n (cid:16) (cid:17)o 6 r+1 1 r+1 = nk−1 (H −H )2− H(2) −H(2) , (2.17) 2!r! k n+r r n+r r Xk=1(cid:20) (cid:21) n (cid:16) (cid:17)o h(r+1)(3) =1 n+r (Hn+r −Hr)3+2 Hn(3+)r −Hr(3) n 3! r −3(H −H ) H(cid:16)(2) −H(2) (cid:17) (cid:18) (cid:19) n+r r n+r r  = 1 r+1 r+1 nk−1 (Hn+r −(cid:16)Hr)3+2 H(cid:17)n(3+)r−Hr(3) , (2.18) 3!r! k −3(H −H ) H(cid:16)(2) −H(2) (cid:17) Xk=1(cid:20) (cid:21)  n+r r n+r r  (cid:16) 2 (cid:17) (Hn+r −Hr)4+3 Hn(2+)r −Hr(2)  h(r+1)(4) =1 n+r −6 Hn(4+)r −Hr(4)(cid:16) (cid:17)  n 4! (cid:18) r (cid:19)−6((cid:16)Hn+r −Hr)2 (cid:17)Hn(2+)r −Hr(2)  +8(H −H ) (cid:16)H(3) −H(3) (cid:17)  n+r r n+r r       (H −(cid:16)H )4+3 H(cid:17)(2) −H(2) 2 n+r r n+r r = 1 r+1 r+1 nk−1−6 Hn(4+)r −Hr(4)(cid:16) (cid:17) . (2.19) 4!r! Xk=1(cid:20) k (cid:21) −6((cid:16)Hn+r −Hr)2 (cid:17)Hn(2+)r −Hr(2)  +8(H −H ) (cid:16)H(3) −H(3) (cid:17)  n+r r n+r r       (cid:16) (cid:17)    Furthermore, using(2.17) and (2.18), by adirectcalculation, wecan give thefollowing corollary. Corollary 2.3 For integers r ∈N and n∈ N, we have 0 r+1 1 r+1 h(r+1)(2) = nk−1 H2 −H(2) −2H H +H2+H(2) , (2.20) n 2!r! k n+r n+r r n+r r r Xk=1(cid:20) (cid:21) n(cid:16) (cid:17) o h(r+1)(3) = 1 r+1 r+1 nk−1 Hn3+r −3Hn+rHn(2+)r +2Hn(3+)r −3Hr Hn2+r −Hn(2+)r . n 3!r! k +(cid:16)3 H2+H(2) H − H3+(cid:17)3H H(2(cid:16))+2H(3) (cid:17) Xk=1(cid:20) (cid:21)  r r n+r r r r r  (cid:16) (cid:17) (cid:16) (cid:17) (2.21)   (k) Moreover, from the definition of harmonic numbers H , we get n r 1 H(k) = H(k)+ , k,n ∈ N. (2.22) n+r n k (n+j) j=1 X By simple calculation, the following identities are easily derived 2 r r 1 1 H2 −H(2) = H + − H(2)+ n+r n+r  n n+j  n (n+j)2 j=1 j=1 X X     r 1 1 =H2−H(2)+2H +2 , (2.23) n n n n+j (n+i)(n+j) j=1 1≤i<j≤r X X   7 H3 −3H H(2) +2H(3) n+r n+r n+r n+r 3 r r 1 1 = H + +2 H(3)+  n n+j  n (n+j)3 j=1 j=1 X X     r r 1 1 −3 H + H(2) +  n n+j n (n+j)2 j=1 j=1 X X    r 1 = H3−3H H(2)+2H(3)+3 H2−H(2) n n n n n n  n+j (cid:16) (cid:17) Xj=1   1 1 +6H +6 . (2.24) n  (n+i)(n+j) (n+i)(n+j)(n+k) 1≤i<j≤r 1≤i<j<k≤r X X   Now, we use the notation W (m) to stands for the sum k,r n+r+1 ∞ k W (m):= (k−1)! (cid:20) (cid:21). (2.25) k,r (n+r)!nm n=1 X where k ∈ N, r ∈ N and m ∈ N\{1}. By using the above notation, we obtain 0 W (m) = ζ(m), 1,r ∞ H n+r W (m) = , 2,r nm n=1 X ∞ H2 −H(2) W (m) = n+r n+r, 3,r nm n=1 X ∞ H3 −3H H(2) +2H(3) W (m) = n+r n+r n+r n+r. 4,r nm n=1 X Next, we give a lemma. The following lemma will be useful in the development of the main theorems. Noting that when r = 0 and k > 1 in (2.25), then using (1.11), which can be rewritten as n+1 ∞ k W (m) := (k−1)! (cid:20) (cid:21) k,0 n!nm n=1 X n n ∞ ∞ k−1 k = (k−1)! (cid:20) (cid:21) + (cid:20) (cid:21)  n!nm n!nm−1 n=1 n=1 X X      = (k−1)! ζ m+1,{1}k−2 +ζ m,{1}k−1 . (2.26) (cid:16) (cid:16) (cid:17) (cid:16) (cid:17)(cid:17) On the other hand, the Aomoto-Drinfeld-Zagier formula reads ∞ ∞ xn+yn−(x+y)n ζ m+1,{1}n−1 xmyn = 1−exp ζ(n) , (2.27) n ! nX,m=1 (cid:16) (cid:17) nX=2 8 which implies that for any m, n ∈ N, the multiple zeta value ζ m+1,{1}n−1 can be repre- sented as a polynomial of zeta values with rational coefficients, an(cid:16)d we have the(cid:17)duality formula ζ n+1,{1}m−1 = ζ m+1,{1}n−1 . (cid:16) (cid:17) (cid:16) (cid:17) In particular, one can find explicit formulas for small weights. m ζ(2,{1} ) = ζ(m+2), m m+2 1 m ζ(3,{1} ) = ζ(m+3)− ζ(k+1)ζ(m+2−k). 2 2 k=1 X Hence, we know that for m, k ∈ N ,the sums W (m) can be expressed as a rational linear k,0 combination of zeta values. For example, from [12, 23] m−2 1 W (m)= (m+2)ζ(m+1)− ζ(m−i)ζ(i+1) , 2,0 2 ( ) i=1 X m(m+1) W (m)= mW (m+1)− ζ(m+2)+ζ(2)ζ(m). 3,0 2,0 6 Lemma 2.4 ([24]) For integers k ∈ N and p ∈ N\{1}, then the following identity holds: n+1 ∞ p 1 Y (k) Y (k) (p−1)! (cid:20) (cid:21) = (p−1)!ζ(p)+ p − p−1 , (2.28) n!n(n+k) k p k n=1 (cid:26) (cid:27) X (2) (3) (r) where Y (n)= Y H ,1!H ,2!H ,··· ,(r−1)!H ,··· , Y (x ,x ,···) stands for the com- k k n n n n k 1 2 plete exponential B(cid:16)ell polynomial defined by (see [15]) (cid:17) tm tk exp x = 1+ Y (x ,x ,···) . (2.29) m k 1 2  m! k! m≥1 k≥1 X X   From the definition of the complete exponential Bell polynomial, we have Y (n)= H ,Y (n) =H2+H(2),Y (n)= H3+3H H(2) +2H(3), 1 n 2 n n 3 n n n n Y (n) =H4+8H H(3) +6H2H(2)+3(H(2))2+6H(4), 4 n n n n n n n Y (n)= H5+10H3H(2) +20H2H(3) +15H (H(2))2+30H H(4)+20H(2)H(3) +24H(5), 5 n n n n n n n n n n n n In fact, Y (n) is a rational linear combination of products of harmonic numbers. Putting k p = 2,3,4 in (2.28), we obtain the corollary. Corollary 2.5 For integer k > 0, we have ∞ H 1 1 1 H n = H2+ H(2) +ζ(2)− k . (2.30) n(n+k) k 2 k 2 k k n=1 (cid:18) (cid:19) X 9 ∞ H2−H(2) 1 H3+3H H(2)+2H(3) H2+H(2) n n = 2ζ(3)+ k k k k − k k , (2.31) n(n+k) k 3 k ( ) n=1 X H4+8H H(3)+6H2H(2)+3(H(2))2+6H(4) ∞ H3−3H H(2) +2H(3) 1 k k k k k k k n n n n =  4 . (2.32) nX=1 n(n+k) k −Hk3+3HkHk(2) +2Hk(3) +6ζ(4)  k     Hence, combining (2.22)-(2.25), (2.30) and (2.31), we deduce the following identities ∞ r ∞ H 1 n W (m)= + 2,r nm nm(n+j) n=1 j=1n=1 X XX m−1 r H = W (m)+ (−1)l−1ζ(m+1−l)H(l)+(−1)m−1 j, (2.33) 2,0 r jm l=1 j=1 X X ∞ H2−H(2) r ∞ H ∞ 1 W (m)= n n +2 n +2 3,r nm nm(n+j) nm(n+i)(n+j) n=1 j=1n=1 1≤i<j≤rn=1 X XX X X m−1 = W (m)+2 (−1)i−1H(i)W (m+1−i) 3,0 r 2,0 i=1 X m−1 1 +2 (−1)l−1ζ(m+1−l) il(j −i) l=1 1≤i<j≤r X X m−1 1 −2 (−1)l−1ζ(m+1−l) jl(j−i) l=1 1≤i<j≤r X X r H2+H(2) r H j j +2ζ(2)H(m)−2 j +(−1)m−1j=1 jm r j=1 jm+1 , (2.34) X X  +2 Hi −2 Hj  im(j −i) jm(j −i) 1≤i<j≤r 1≤i<j≤r  X X   r ∞ H2−H(2) ∞ H W (m)= W (m)+3 n n +6 n 4,r 4,0 nm(n+j) nm(n+i)(n+j) j=1n=1 1≤i<j≤rn=1 XX X X ∞ 1 +6 , nm(n+i)(n+j)(n+k) 1≤i<j<k≤rn=1 X X m−1 = W (m)+3 (−1)l−1H(l)W (m+1−l) 4,0 r 3,0 l=1 X m−1 1 1 1 +6 (−1)l−1W (m+1−l) − 2,0 j −i il jl l=1 1≤i<j≤r (cid:18) (cid:19) X X 10

See more

The list of books you might like