loading

Logout succeed

Logout succeed. See you again!

ebook img

Control of Networked Multiagent Systems with Uncertain Graph Topologies PDF

file size0.22 MB
languageEnglish

Preview Control of Networked Multiagent Systems with Uncertain Graph Topologies

January2015 Control of Networked Multiagent Systems † with Uncertain Graph Topologies 5 1 0 2 n ∗ TanselYucelen andJohnDanielPeterson a J DepartmentofMechanicalandAerospaceEngineering 4 MissouriUniversityofScienceandTechnology 1 ] KevinL.Moore C DepartmentofElectricalEngineeringandComputerScience O ColoradoSchoolofMines . h t a m Abstract—Multiagentsystemsconsistofagentsthatlocallyexchangeinformationthrough [ a physical network subject to a graph topology. Current control methods for networked mul- 1 tiagentsystemsassumetheknowledgeofgraphtopologiesinordertodesigndistributedcon- v 9 trollawsforachievingdesiredglobalsystembehaviors. However,thisassumptionmaynotbe 3 4 valid for situations where graph topologies are subject to uncertaintieseither due to changes 3 in the physical network or the presence of modeling errors especially for multiagent systems 0 . involving a large number of interacting agents. Motivating from this standpoint, this paper 1 0 studiesdistributedcontrolofnetworked multiagentsystemswithuncertaingraphtopologies. 5 Theproposedframeworkinvolvesacontrollerarchitecturethathasanabilitytoadaptitsfeed- 1 : backgainsinresponsetosystemvariations.Specifically,weanalyticallyshowthattheproposed v i controllerdrivesthetrajectoriesofanetworkedmultiagentsystemsubjecttoagraphtopology X r withtime-varyinguncertaintiestoacloseneighborhoodofthetrajectoriesofagivenreference a modelhavingadesiredgraphtopology.Asaspecialcase,wealsoshowthatanetworkedmulti- agentsystemsubjecttoagraphtopologywithconstantuncertaintiesasymptoticallyconverges tothetrajectoriesofagivenreferencemodel.Althoughthemainresultofthispaperispresented in the context of average consensus problem, the proposed framework can be used for many otherproblemsrelatedtonetworkedmultiagentsystemswithuncertaingraphtopologies. Keywords — Networked multiagent systems; uncertain graph topologies; distributed con- trol;adaptivecontrol;stability † ThisresearchwassupportedinpartbytheUniversityofMissouriResearchBoard. ∗ Correspondingauthor: 400West,13thStreet,Rolla,MO65409(Address);+15733417702(Phone);+1573341 6899(Fax);[email protected](Email). 1. Introduction Multiagent systems consist of agents that locally exchange information through a physical network subject to a graph topology. Current control methods for networked multiagentsys- temsassumetheknowledgeofgraphtopologiesinordertodesigndistributedcontrollawsfor achievingdesiredglobalsystembehaviors(see,forexample,[1]andreferencestherein). How- ever,thisassumptionmaynotbevalidforsituationswheregraphtopologiesaresubjecttoun- certainties either due to changes in the physical network or the presence of modeling errors especiallyformultiagentsystemsinvolvingalargenumberofinteractingagents. Uncertainnatureofnetworkedmultiagentsystemshasreceivedaconsiderableattentionre- cently,includingnotableresults[2–10]. Forachievingdesiredmultiagentsystembehavior,[2,3] make a specific assumptionon thenetwork connectivityother thanthestandard assumption ontheconnectednessofnetworkedagents. Theauthorsof[4]excitethemultiagentsystemin ordertodetectandisolatetheuncertainagentsfromthenetworktopology. Like[2,3],acom- putationallyexpensiveandnotscalablealgorithmisproposedin[5,6]basedoninputobservers technique,wheretheeffectofuncertainagentsontheoverallmultiagentsystemperformance is quantified. An extension of this work is also given in [7] that focuses on the detection and isolationofuncertainagents.Theauthorsof[8,9]useanadaptivecontrolapproachinorderto suppresstheeffectofuncertainagentsontheoverallmultiagentsystemperformancewithout making specific assumptions on the fraction of misbehaving agents. A common similarityof theapproachesdocumentedin[2–9]isthattheymodeluncertaintiesintheagentdynamicsas additive perturbationsthat do not depend on the state of agents, where these results are not applicabletothenetworkedmultiagentsystemswithgraphtopologyuncertaintiessincesuch uncertaintiesdependonthestateofagents. Onerelevantworktotheresultsofthispaperisrecentlyappearedin[10],wheretheauthors utilizeadaptiveandslidingmodecontrolmethodologiesinordertoenforceanetworkedmul- tiagentsystemsubjecttoanuncertaingraphtopologytofollowagivenreferencemodelhaving a desired graph topology. However, the result in [10] may require a centralized information 1 exchangeamongnetworkedagentsingeneralduetothestructureoftheproposedcontrolal- gorithm (see (8) or (18) of [10]). Other important results, which are related to this paper, are presentedin[11–13]withoutrequiringacentralizedinformationexchange. However,thesere- sultsholdforgraphtopologiessubjecttoconstantuncertaintiesonly. Inthispaper,we studydistributedcontrolofnetworked multiagentsystemswithuncertain graph topologies. The proposed framework involves a novel controller architecture that has anabilitytoadaptitsfeedbackgainsinresponsetosystemvariations. Specifically,weanalyti- callyshowthattheproposedcontrollerdrivesthetrajectoriesofanetworkedmultiagentsystem subjecttoagraphtopologywithtime-varyinguncertaintiestoacloseneighborhoodofthetra- jectoriesofagivenreferencemodelhavingadesiredgraphtopology. Asaspecialcase,wealso showthatanetworkedmultiagentsystemsubjecttoagraphtopologywithconstantuncertain- tiesasymptoticallyconvergestothetrajectoriesofagivenreferencemodel. Althoughthemain result of this paper is presented in the context of average consensus problem, the proposed frameworkcanbeusedformanyotherproblemsrelatedtonetworkedmultiagentsystemswith uncertaingraphtopologies. 2. Notation,Definitions,andGraph-TheoreticNotions Thenotationusedinthispaperisfairlystandard. Specifically,Rdenotesthesetofrealnum- bers,Rndenotesthesetofn×1realcolumnvectors,Rn×m denotesthesetofn×mrealmatrices, R denotesthesetofpositiverealnumbers,Rn×n (resp.,Rn×n)denotesthesetofn×npositive- + + + definite(resp.,nonnegative-definite)realmatrices,Sn×n (resp.,Sn×n)denotesthesetofn×n + + symmetricpositive-definite(resp.,symmetricnonnegative-definite)realmatrices,0 (resp.,1 n n )denotesthen×1vectorofallzeros(resp.,ones),andI denotesthen×nidentitymatrix.Fur- n thermore,wewrite(·)T fortranspose,k·k fortheEuclidiannorm,λ (A)(resp.,λ (A))for 2 min max theminimum(resp.,maximum)eigenvalueoftheHermitianmatrixA,λ (A)forthei-theigen- i valueof A(Aissymmetricandtheeigenvaluesareorderedfromleasttogreatestvalue),diag(a) forthediagonalmatrixwiththevectora onitsdiagonal,and[A] fortheentryofthematrix A ij onthei-throwand j-thcolumn. 2 Next, we recall some of the basic notions from graph theory, where we refer to [1] for fur- therdetails. Inthemultiagentliterature,graphsarebroadlyadoptedtoencodeinteractionsin networkedsystems. AnundirectedgraphG isdefinedbyasetVG ={1,...,n}ofnodesandaset EG ⊂VG×VG of edges. If (i,j)∈EG, then thenodes i and j areneighbors and theneighboring relation is indicated with i ∼ j. The degree of a node is given by the number of its neighbors. Letting d be the degree of node i, then the degree matrix of a graph G, D(G)∈Rn×n, is given i by D(G) , diag(d), d = [d ,...,d ]T. A path i i ...i is a finite sequence of nodes such that 1 n 0 1 L i ∼i , k =1,...,L,anda graphG is connected ifthereisa pathbetweenanypairofdistinct k−1 k nodes. Theadjacency matrixofagraphG,A(G)∈Rn×n,isgivenby [A(G)] , 1, if(i,j)∈EG, ij ½ 0, otherwise. The Laplacian matrix of a graph, L(G)∈Sn×n, playing a central role in many graph theoretic + treatmentsof multiagentsystems, is given by L(G),D(G)−A(G), where thespectrumof the Laplacianofaconnected,undirectedgraphG canbeorderedas 0=λ (L(G))<λ (L(G))≤···≤λ (L(G)), (1) 1 2 n with1 astheeigenvectorcorrespondingtothezeroeigenvalueλ (L(G))andL(G)1 =0 and n 1 n n eL(G)1 =1 . n n 3. ProblemFormulation Consider a multiagent system consisting of n agents that locally exchange information ac- cording to a connected, undirected uncertain graph G with nodes and edges representing u agents and interagent information exchange links, respectively. We assume that the network isstatic,andhence,agentevolutionwillnotcauseedgestoappearordisappearinthenetwork. Specifically,letx (t)∈Rdenotethestateofnodei attimet ∈R ,whosedynamicsisdescribed i + by x˙ (t) = −α (t)x (t)+ β (t)x (t)+u (t), x (0)=x , (2) i i i ij j i i i0 iX∼j 3 (a) (b) 1.1 1.1 1 1 0.9 0.9 ts0.8 ts0.8 n n e0.7 e0.7 g g A0.6 A0.6 0.5 0.5 0.4 0.4 0.3 0.3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Time (sec) Time (sec) (c) (d) 2 1 1.8 0.8 1.6 s 0.6 s1.4 t t en 0.4 en1.2 Ag 0.2 Ag 1 0.8 0 0.6 −0.2 0.4 −0.4 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Time (sec) Time (sec) Figure1:Trajectoriesofthreeagentsonalinegraphsubjecttoinitialconditions(x ,x ,x = 10 20 30 (0.2,0.4,1.2) for (a) (α ,α ,α ) = (1,2,1) and (β ,β ,β ,β ) = (1,1,1,1), (b) 1 2 3 12 21 23 32 (α ,α ,α ) = (1,1.1,1) and (β ,β ,β ,β ) = (1,0.1,1,1), (c) (α ,α ,α ) = 1 2 3 12 21 23 32 1 2 3 (1,2,1) and (β ,β ,β ,β ) = (−1,−1,1,1), and (d) (α ,α ,α ) = (1,1.5,1) and 12 21 23 32 1 2 3 (β ,β ,β ,β )=(1,1,1,1). 12 21 23 32 whereα (t)∈Randβ (t)∈RareunknownboundedcoefficientsofthegraphG withbounded i ij u timederivatives,andu (t)∈R,t ∈R ,isthecontrolinputofnodei. Inthispaper,weareinter- i + estedtodesignadistributedcontrolinputu (t),t ∈R ,suchthat(2)achievesaverageconsen- i + susapproximately(orasymptotically,i.e.,x(t)→(1 1T/n)x ast →∞,x(t)=[x (t),...,x (t)]T∈ n n 0 1 n Rn)inthepresenceofanuncertaingraphtopology. Remark1. In the absence of proper control inputs u (t)∈R, t ∈R , (2) cannot necessarily i + achieveaverageconsensus.Toelucidatethispoint,letunknowncoefficientsofthegraphG be u constant,i.e.,(α (t),β (t))=(α ,β ),andconsiderfourcasesgiveninFigure1thatshowtra- i ij i ij jectoriesofthreeagentsonalinegraphsubjecttoinitialconditions(x ,x ,x )=(0.2,0.4,1.2). 10 20 30 Since α = β and β = β in case (a), this case results in average consensus at point i i∼j ij ij ji P (1 1T/n)x =0.6. Sinceβ 6=β incase(b),thiscasedoesnotresultinaverageconsensusat n n 0 12 21 point0.6.Case(c)considersamultiagentsystemwithantagonisticinteractions[14],andhence, 4 itdoesnotresultinaverageconsensusduetotheexistenceofmultipleequilibriumpoints. Fi- nally, since α 6= β for i = 2 in case (d), this case does not result in average consensus i i∼j ij P as well. In summary, (2) results in average consensus if αi = i∼jβij and βij =βji ∈R+ [15]. P However,thiscannotbejustifiedduetounknowncoefficientsofthegraphG ,andhence,one u needstodesignpropercontrolinputsu (t)∈R,t ∈R . i + Next, we propose a control input u (t)∈R, t ∈R , to drive the trajectories of (2) to a close i + neighborhood of a given reference model having a desired graph topology without requiring a centralized informationexchange among networked agents. For this purpose, consider the referencemodelthatlocallyexchangeinformationaccordingtoaconnected,undirectedgraph G givenby r˙ (t) = − r (t)−r (t) , r (0)=x , (3) i i j i i0 iX∼j¡ ¢ wherer (t)∈R,t ∈R ,denotesthestateofthereferencemodelfornodei. Notethat i + lim r(t)=(1 1T/n)x , (4) n n 0 t→∞ wherer(t)=[r (t),...,r (t)]T∈Rn.Throughoutthispaperweassumethatthenodesandedges 1 n ofgraphsG andG coincide,howeverthegraphG issubjecttounknowncoefficientsα (t)and u u i β (t),asdiscussedearlier. ij Remark2. Thereferencemodelgivenby(3)canbeeasilyextendedto r˙ (t) = − ξ r (t)−r (t) , r (0)=x , (5) i ij i j i i0 iX∼j ¡ ¢ withoutchangingthefollowingresultsofthispaper,whereξii = i∼jξij andξij =ξji ∈R+. P Remark3. Notethat(3)canbeequivalentlywrittenas r˙ (t) = −d r (t)+ r (t), r (0)=x , (6) i i i j i i0 iX∼j whered isthedegreeofnodei ongraphG. Therefore,ifoneknowsthecoefficientsα (t)and i i β (t)of2,thenthecontrolinput ij u (t) = − d −α (t) x (t)+ 1−β (t) x (t), (7) i i i i ij j ¡ ¢ iX∼j¡ ¢ 5 resultsinaverageconsensusatpoint(1 1T/n)x . n n 0 Sincethecontrolinput(7)giveninRemark3isnotfeasibleduetounknowncoefficientsα (t) i andβ (t),weproposetheadaptivecontrolinputgivenby ij u (t) = −k x (t)−r (t) −wˆ (t)x (t)− wˆ (t)x (t), (8) i i i i i i ij j ¡ ¢ iX∼j where k ∈R for at leastone agentor a subsetof agents(and k =0 for others), and theesti- i + i mateswˆ (t)∈Randwˆ (t)∈R,t ∈R ,satisfytheupdatelaws i ij + w˙ˆ (t) = γ Proj wˆ (t), x (t) x (t)−r (t) , wˆ (0)=wˆ , (9) i i i i i i i i0 ³ ´ ¡ ¢ w˙ˆ (t) = γ Proj wˆ (t), x (t) x (t)−r (t) , wˆ (0)=wˆ , (10) ij ij ij j i i ij ij0 ³ ´ ¡ ¢ withγi ∈R+andγij ∈R+beingthecorrespondinglearningrates.Intheupdatelawsgivenby(9) and(10),Projdenotestheprojectionoperator[16,17],whichisusedtokeeptheestimateswˆ (t) i and wˆ (t)boundedfor all t ∈R . In thenextsection,we analyticallyshowthattheproposed ij + adaptivecontrolinputgivenby(8)alongwiththeupdatelaws(9)and(10)drivesthetrajectories of(2)toacloseneighborhoodofthereferencemodeltrajectoriesgivenby(5). 4. StabilityAnalysis Inthissection,weestablishstabilitypropertiesoftheproposedadaptivecontrolinputgiven by(8)alongwiththeupdatelaws(9)and(10). Forthispurpose,let e (t),x (t)−r (t), t ∈R , (11) i i i + denotethelocalerrordynamicsthatsatisfy e˙ (t) = −α (t)x (t)+ β (t)x (t)+u (t)+d r (t)− r (t) i i i ij j i i i j iX∼j iX∼j = −α (t)x (t)+ β (t)x (t)+u (t)+d r (t)− r (t)+d x (t) i i ij j i i i j i i iX∼j iX∼j −d x (t)+ x (t)− x (t) i i j j iX∼j iX∼j = −d e (t)+ e (t)+ d −α (t) x (t)+ β (t)−1 x (t)+u (t) i i j i i i ij j i iX∼j ¡ ¢ iX∼j¡ ¢ 6 = − e (t)−e (t) +w (t)x (t)+ w (t)x (t)+u (t) i j i i ij j i iX∼j¡ ¢ iX∼j = − e (t)−e (t) +w (t)x (t)+ w (t)x (t)−k e (t) i j i i ij j i i iX∼j¡ ¢ iX∼j −wˆ (t)x (t)− wˆ (t)x (t) i i ij j iX∼j = −k e (t)− e (t)−e (t) −w˜ (t)x (t)− w˜ (t)x (t), e (0)=0, (12) i i i j i i ij j i iX∼j¡ ¢ iX∼j where w˜ (t) , wˆ (t)−w (t), t ∈R , (13) i i i + w˜ (t) , wˆ (t)−w (t), t ∈R , (14) ij ij ij + wi(t),di−αi(t),t ∈R+,andwij(t),βij(t)−1,t ∈R+. Inaddition,itfollowsfrom(9)and(10) that w˙˜ (t) = γ Proj wˆ (t), x (t) x (t)−r (t) −w˙ (t), w˜ (0)=w˜ , (15) i i i i i i i i i0 ³ ´ ¡ ¢ w˙˜ (t) = γ Proj wˆ (t), x (t) x (t)−r (t) −w˙ (t), w˜ (0)=w˜ , (16) ij ij ij j i i ij ij ij0 ³ ´ ¡ ¢ where w˜ ,wˆ −w and w˜ ,wˆ −w . Note that w˙ (t)and w˙ (t) areboundedsinceit i0 i0 i ij0 ij0 ij i ij isassumedthatunknownboundedcoefficientsα (t)andβ (t)haveboundedtimederivates. i ij Wenowstatethefollowinglemmanecessaryfortheresultsofthissection. Lemma1. Let K =diag(k), k =[k ,k ,...,k ]T, k ∈R , i =1,...,n, andassumethatatleast 1 2 n i + oneelementofk isnonzero. Then,fortheLaplacianofaconnected,undirectedgraph, F(G),L(G)+K ∈Sn×n, (17) + anddet(F(G))6=0. Proof. Consider the decomposition K =K +K , where K ,diag([0,...,0,φ ,0,...,0]T) and 1 2 1 i K ,K −K , where φ denotes the smallest nonzero diagonal element of K appearing on its 2 1 i i-thdiagonal,sothatK ∈Sn×n. FromtheRayleigh’sQuotient[18],theminimumeigenvalueof 2 + L(G)+K canbegivenby 1 λ (L(G)+K )=min{xT L(G)+K x|xTx=1}, (18) min 1 1 x ¡ ¢ 7 where x istheeigenvectorcorrespondingtothisminimumeigenvalue. NotethatsinceL(G)∈ Sn×n andK ∈Sn×n, andhence, L(G)+K isrealandsymmetric, x isarealeigenvector. Now, + 1 + 1 expanding(18)as xT(L(G)+K )x = (x −x )2+φ x2, (19) 1 i j i i iX∼j andnotingthattherighthandsideof(19)iszeroonlyifx≡0,itfollowsthatλ (L(G)+K )>0, min 1 and hence, L(G)+K ∈Sn×n. Finally, let λ be an eigenvalue of F(G)= L(G)+K +K . Since 1 + 1 2 λ (L(G)+K )>0 and λ (K )=0, it follows from Fact 5.11.3of [19] thatλ (L(G)+K )+ min 1 min 2 min 1 λ (K )≤λ,andhence,λ>0,whichimpliesthat(17)holdsanddet(F(G))6=0. (cid:4) min 2 Thenexttheorempresentsthefirstresultofthissection. Theorem1. Considerthenetworkedmultiagentsystemgivenby(2)subjecttoanuncertain graph topology, thereference modelgiven by (3), theadaptivecontrol inputgiven by(8), and theupdatelawsgivenby(9)and(10). Then,thesolution e (t),w˜ (t),w˜ (t) oftheclosed-loop i i ij ¡ ¢ dynamicalsystemgivenby(12),(15),and(16)isboundedforall 0,w˜ ,w˜ ,t ∈R ,and(i,j). i0 ij0 + ¡ ¢ Proof. Firstconsiderthequadraticfunctiongivenby 1 V (e ,w˜ ,w˜ ) = e2+γ−1w˜2+ γ−1w˜2 , (20) i i i ij 2³ i i i iX∼j ij ij´ and notethatV (0,0,0)=0 andV (e ,w˜ ,w˜ )∈R , (e ,w˜ ,w˜ )6=(0,0,0). Furthermore,V (e , i i i i ij + i i ij i i w˜ ,w˜ ) is radially unbounded. Differentiating (20) along the closed-loop trajectories of (12), i ij (15),and(16)yields V˙ e (t),w˜ (t),w˜ (t) ≤ −e (t) e (t)−e (t) −k e2(t)+w∗, (21) i i i ij i i j i i i ¡ ¢ iX∼j¡ ¢ where w∗ is an upper bound satisfying γ−1 wˆ (t)−w (t) w˙ (t)+ γ−1 wˆ (t)−w (t) i i i i i i∼j ij ij ij ¯¯ ¡ ¢ P ¡ ¢ ·w˙ (t) ≤ w∗, t ∈ R . Note that w∗ exi¯s¯ts since all the terms inside the norm operator are ij 2 i + i ¯¯ ¯¯ boundedandprojectionoperatorisusedfortheestimateswˆ (t)andwˆ (t). Now,considerthe i ij Lyapunovfunctioncandidategivenby n V(·) = V (e ,w˜ ,w˜ ). (22) i i i ij iX=1 8 Thetimederivativeof(22)isgivenusing(21)as n V˙(·) ≤ −eT(t) L(G)+K e(t)+w∗, w∗, w∗, (23) i ¡ ¢ iX=1 where L(G) denotes theLaplacian matrixof (3), K ,diag(k), k =[k ,k ,...,k ]T, k ∈R , and 1 2 n i + e(t) = [e (t),...,e (t)]T. From the definition of the adaptive control input in (8), notice that 1 n at least one element of k is nonzero. This implies from Lemma 1 that L(G)+K ∈ Sn×n and + det(L(G)+K)6=0,andhence,λ L(G)+K ke(t)k ≤eT(t) L(G)+K e(t). Now, sinceV˙(·)≤0 min 2 ¡ ¢ ¡ ¢ when ke(t)k ≥w∗/λ L(G)+K , itfollows thattheclosed-loop dynamicalsystem givenby 2 min ¡ ¢ (12),(15),and(16)isboundedforall 0,w˜ ,w˜ ,t ∈R ,and(i,j). (cid:4) i0 ij0 + ¡ ¢ Remark4. In order to drivethe trajectories of (2) to a close neighborhoodof the reference ∗ modeltrajectoriesgivenby(5),theperturbationtermw in(25)needstobesmall. Thisholds ifthetimederivativeofunknowncoefficients α (t)andβ (t)issmall. Ifthisisnottrue,then i ij ∗ onecanincreasethelearningratesγ andγ tomakew small. i ij As a special case when theunknown coefficients are constant, i.e., (α (t),β (t))=(α ,β ), i ij i ij the next theorem shows that the proposed adaptive control input given by (8) along with the updatelaws(9)and(10)asymptoticallydrivesthetrajectoriesof(2)tothereferencemodeltra- jectoriesgivenby(5). Theorem2. Considerthenetworkedmultiagentsystemgivenby(2)subjecttoanuncertain graph topology, thereference modelgiven by (3), theadaptivecontrol inputgiven by(8), and theupdatelawsgivenby(9)and(10). Then,thesolution e (t),w˜ (t),w˜ (t) oftheclosed-loop i i ij ¡ ¢ dynamical system given by (12), (15), and (16) is Lyapunov stable for all 0,w˜ ,w˜ , t ∈R , i0 ij0 + ¡ ¢ and(i,j),andlim e (t)=0foralli. Inaddition,lim x(t)=(1 1T/n)x . t→∞ i t→∞ n n 0 Proof. To show the Lyapunov stability of the closed-loop dynamical system given by (12), (15),and(16),firstconsiderthequadraticfunctiongivenby(20). Differentiating(20)alongthe closed-looptrajectoriesof(12),(15),and(16)yields V˙ e (t),w˜ (t),w˜ (t) ≤ −e (t) e (t)−e (t) −k e2(t). (24) i i i ij i i j i i ¡ ¢ iX∼j¡ ¢ Now,considertheLyapunovfunctioncandidategivenby(22),wherethetimederivativeof(22) 9

See more

The list of books you might like