loading

Logout succeed

Logout succeed. See you again!

ebook img

Complex mass renormalization in EFT PDF

file size0.22 MB

Preview Complex mass renormalization in EFT

Complex mass renormalization in EFT D. Djukanovic InstitutfürKernphysik,JohannesGutenberg-Universität,J.J.Becherweg45, 0 D-55099Mainz,Germany 1 E-mail: [email protected] 0 2 J. Gegelia∗ n a InstitutfürKernphysik,JohannesGutenberg-Universität,J.J.Becherweg45, J D-55099Mainz,Germany 2 and 1 HighEnergyPhysicsInstituteofTSU,Tbilisi,Georgia ] E-mail: [email protected] h p A. Keller - p InstitutfürKernphysik,JohannesGutenberg-Universität,J.J.Becherweg45, e D-55099Mainz,Germany h E-mail: [email protected] [ 1 S. Scherer v InstitutfürKernphysik,JohannesGutenberg-Universität,J.J.Becherweg45, 2 D-55099Mainz,Germany 7 7 E-mail: [email protected] 1 . 1 Weconsideraneffectivefieldtheoryofunstableparticles(resonances)usingthecomplex-mass 0 0 renormalization. As an application we calculate the masses and the widths of the ρ meson and 1 theRoperresonance. : v i X r a 6thInternationalWorkshoponChiralDynamics,CD09 July6-10,2009 Bern,Switzerland ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Complexmassrenormalization J.Gegelia 1. Introduction Theconstructionofconsistentchiraleffectivefieldtheorieswithheavydegreesoffreedomis anon-trivialproblem. Forexample,inbaryonchiralperturbationtheorytheusualpowercounting isviolatedifoneusesthedimensionalregularizationandtheminimalsubtractionscheme[1]. The current solutions to this problem either involve the heavy-baryon approach [2] or use a suitably chosenrenormalizationcondition[3,4,5,6]. Duetothesmallmassdifferencebetweenthenucleon andthe∆(1232)incomparisonwiththenucleonmass,the∆resonancecanbeconsistentlyincluded intheframeworkofeffectivefieldtheory[7,8,9,10,11]. Ontheotherhand,thetreatmentoftheρ mesonortheinclusionofheavierbaryonresonances suchastheRoperresonanceismorecomplicated. Weaddresstheissueofpowercountinginsuch effective theories by using the complex-mass renormalization scheme [12, 13, 14], which can be understoodasanextensionoftheon-mass-shellrenormalizationschemetounstableparticles. Asanapplicationweconsiderthemassesandthewidthsoftheρ mesonandtheRoperreso- nance. MoredetailscanbefoundinRefs.[15,16]. 2. Rhomeson We start with the most general effective Lagrangian for ρ and ω mesons and pions in the parametrizationofthemodelIIIofRef.[17]: L =L(2)+L +L +L +···. π ρπ ω ωρπ Theindividualexpressionsrelevantforthecalculationsofthisworkread L(2) = F2Tr(cid:104)∂ U(∂µU)†(cid:105)+F2M2Tr(cid:0)U†+U(cid:1), π µ 4 4 L = −1Tr(cid:0)ρ ρµν(cid:1)+(cid:34)M2+cxM2Tr(cid:0)U†+U(cid:1)(cid:35)Tr(cid:20)(cid:18)ρµ−iΓµ(cid:19)(cid:18)ρ −iΓµ(cid:19)(cid:21), ρπ 2 µν ρ 4 g µ g L = −1(cid:0)∂ ω −∂ ω (cid:1)(∂µων−∂νωµ)+Mω2 ωµωµ, ω µ ν ν µ 4 2 1 (cid:16) (cid:17) L = g ε ωνTr ραβuµ , (2.1) ωρπ 2 ωρπ µναβ where (cid:18)i(cid:126)τ·(cid:126)π(cid:19) (cid:126)τ·(cid:126)ρµ U = u2=exp , ρµ = , F 2 ρµν = ∂µρν−∂νρµ−ig[ρµ,ρν], Γ = 1(cid:2)u†∂ u+u∂ u†u =i(cid:2)u†∂ u−u∂ u†(cid:3). (2.2) µ µ µ µ µ µ 2 All the fields and parameters in Eqs. (2.1) are bare quantities. In order to increase the readability of the expressions we have omitted the usual subscript 0. In Eqs. (2.1), F denotes the pion-decay constant in the chiral limit, M2 is the lowest-order expression for the squared pion mass, M and ρ 2 Complexmassrenormalization J.Gegelia M refer to the bare ρ and ω masses, g, c , and g are coupling constants. We use the KSFR ω x ωρπ relation[18,19] M2 = 2g2F2. (2.3) ρ Toperformtherenormalizationweexpressthebarequantitiesintermsofrenormalizedones: M = M +δM , ρ,0 R R c = c +δc , x,0 x x ··· (2.4) Weapplythecomplex-massrenormalizationscheme[12,13,14]andchooseM2=(M −iΓ /2)2 R χ χ as the pole of the ρ-meson propagator in the chiral limit. M and Γ are the pole mass and the χ χ width of the ρ meson in the chiral limit, respectively. Both are input parameters in our approach. Inthecomplex-massrenormalizationscheme,thecountertermsareingeneralcomplexquantities. Thepresenceoflargeexternalmomentaoftheρ mesonleadstoaconsiderablecomplication in the power counting for loop diagrams. It is necessary to investigate all possible flows of the external momenta through the internal lines of a loop diagram. Next, one needs to determine the chiral orders for all flows of external momenta. Finally, the smallest of these orders is defined as thechiralorderofthegivendiagram. Thepowercountingrulesareasfollows. Letqcollectivelystandforasmallquantitysuchas thepionmass. ApionpropagatorcountsasO(q−2)ifitdoesnotcarrylargeexternalmomentaand asO(q0)if itdoes. A vector-mesonpropagator countsasO(q0)if itdoes notcarry large external momenta and as O(q−1) if it does. The pion mass counts as O(q1), the vector-meson mass as O(q0),andthewidthasO(q1). VerticesgeneratedbytheeffectiveLagrangianofGoldstonebosons L(n)countasO(qn). DerivativesactingonheavyvectormesonscountasO(q0). Thecontributions π ofvectormesonloopscanbeabsorbedsystematicallyintheparametersoftheeffectiveLagrangian. Thedressedpropagator,expressedintermsoftheselfenergy iΠab(p)=iδab(cid:2)g Π (p2)+p p Π (p2)(cid:3) (2.5) µν µν 1 µ ν 2 hastheform g −p p 1+Π2(p2) iSab(p)=−iδab µν µ νMR2+Π1(p2)+p2Π2(p2) . (2.6) µν p2−M2−Π (p2)+i0+ R 1 Thepoleofthepropagatorisfoundasthe(complex)solutiontothefollowingequation: z−M2−Π (z)=0. (2.7) R 1 Wedefinethepolemassandthewidthoftheρ mesonbyparameterizing z=(M −iΓ/2)2. (2.8) ρ ThesolutiontoEq.(2.7)canbefoundperturbativelyasaloopexpansion z=z(0)+z(1)+z(2)+···. (2.9) 3 Complexmassrenormalization J.Gegelia (a) (b) (c) Figure1: One-loopcontributionstotheρ-mesonself-energyatO(q3). Thedashed,solid,andwigglylines correspondtothepion,theω meson,andtheρ meson,respectively. Eachofthesetermshasitsownchiralexpansion. Uptothirdchiralorderthepolereads z=z(0)=M2+c M2. (2.10) R x The one-loop contributions to the vector self-energy up to O(q3) are shown in Fig. 1. The contributionsofdiagrams(a)and(b)toΠ aregivenby 1 g2(cid:2)2A (M2)−(cid:0)p2−4M2(cid:1)B (p2,M2,M2)(cid:3) 0 0 Π = , 1(a) 16π2(n−1) (n−2)g2 (cid:26) Π = − ωρπ M4B (p2,M2,M2)−(cid:2)2B (p2,M2,M2)M2 +A (M2)−A (M2) 1(b) 64π2(n−1) 0 ω 0 ω ω 0 0 ω +2B (p2,M2,M2)p2(cid:3)M2+B (p2,M2,M2)p2+M2 (cid:2)B (p2,M2,M2)M2 0 ω 0 ω ω 0 ω ω (cid:27) +A (M2)−A (M2)(cid:3)−(cid:2)2B (p2,M2,M2)M2 +A (M2)+A (M2)(cid:3)p2 . (2.11) 0 0 ω 0 ω ω 0 0 ω Usingdimensionalregularizationwithnspace-timedimensions,theloopfunctionsread A (cid:0)m2(cid:1) = −32π2λm2−2m2lnm, 0 µ B (cid:0)p2,m2,m2(cid:1) = −32π2λ+2ln µ −1 0 1 2 m 2 1(cid:18) m2 (cid:19) (cid:18) m2 (cid:19) ω − 1+ 2 F 1,2;3;1+ 2 − F (1,2;3;ω), 2 m2(ω−1) 2 1 m2(ω−1) 2 2 1 1 1 (cid:113) m2−m2+p2+ (cid:0)m2−m2+p2(cid:1)2−4m2p2 1 2 1 2 1 ω = , (2.12) 2m2 1 where F (a,b;c;z)isthestandardhypergeometricfunction,µ isthescaleparameterand 2 1 (cid:26) (cid:27) λ = 1 1 −1 (cid:2)ln(4π)+Γ(cid:48)(1)+1(cid:3) . (2.13) 16π2 n−4 2 Theρππ vertexindiagram(a)shouldcountasO(q0). However,itslargecomponentdoesnot contributetoΠ . Therefore,theΠ partofdiagram(a)hasorderO(q4). Diagram(c)containsthe 1 1 contributionsofthecounterterms. Indiagram(b)wetakeM =M . ω R 4 Complexmassrenormalization J.Gegelia WefixthecountertermssuchthatthepoleinthechirallimitstaysatM2. Thecontributionsof R diagrams(a),(b),and(c)tothepole,expandeduptoO(q4),read (cid:16) (cid:17) z(1)= g2M4 (cid:32)3−2lnM2 −2iπ(cid:33)−g2ωρπM3Mχ −g2ωρπM4 lnMMχ22 −1 +ig2ωρπM3Γχ . 16π2M2 M2 24π 32π2 48π R χ (2.14) 3. RoperResonance The most general effective Lagrangian, relevant for the subsequent calculation of the pole of theRoperpropagatoratorderO(q3)reads: L =L +L(2)+L +L +L , (3.1) 0 π R NR ∆R whereL isgivenby 0 L = N¯ (i∂/−m )N+R¯(i∂/−m )R 0 N0 R0 (cid:20) (cid:21) −Ψ¯µξ23 (i∂/−m∆0)gµν−i(γµ∂ν+γν∂µ)+iγµ∂/γν+m∆0γµγν ξ32Ψν. (3.2) Here,N andRdenotenucleonandRoperisospindoubletswithbaremassesm andm ,respec- N0 R0 tively. Ψ arethevector-spinorisovector-isospinorRarita-Schwingerfieldsofthe∆resonance[20] ν withbaremassm∆0 andξ23 istheisospin-3/2projector(seeRef.[10]formoredetails). TheinteractiontermsL ,L ,andL areconstructedfollowingRef.[21]. Atleadingorder R NR ∆R g L(1)= RR¯γµγ u R. (3.3) R 2 5 µ Thenext-to-leading-orderRoperLagrangianisgivenby L(2)=c∗ (cid:104)χ (cid:105)R¯R, (3.4) R 1,0 + wherec∗ isacouplingconstantandχ =M2(U+U†). Thenucleon-Roperinteractionreads 1,0 + g L(1)= NRR¯γµγ u N+h.c.. (3.5) NR 2 5 µ Finally,theleading-orderinteractionbetweenthedeltaandtheRoperisgivenby L∆(R1)=−g∆RΨ¯µξ23(gµν+z˜γµγν)uνR+h.c., (3.6) wherewetakethe”off-mass-shellparameter”z˜=−1. Torenormalizetheloopdiagrams,weapplythecomplex-massrenormalizationandwrite: m = z +δz , R0 χ χ m = m+δm, N0 m = z +δz , ∆0 ∆χ ∆χ c∗ = c∗+δc∗, 1,0 1 1 ··· , (3.7) 5 Complexmassrenormalization J.Gegelia (a) (b) (c) Figure2: One-loopself-energydiagramsoftheRoper. Thedashed,solid,double-dashed,anddouble-solid linescorrespondtothepion,nucleon,Roper,anddelta,respectively. where z is the complex pole of the Roper propagator in the chiral limit, m is the mass of the χ nucleoninthechirallimit,andz isthepoleofthedeltapropagatorinthechirallimit. ∆χ WeorganizeourperturbativecalculationbyapplyingthestandardpowercountingofRefs.[22], i.e., an interaction vertex obtained from an O(qn) Lagrangian counts as order qn, a pion propaga- tor as order q−2, a nucleon propagator as order q−1, and the integration of a loop as order q4. In addition, we assign the order q−1 to the ∆ propagator and to the Roper propagator (carrying loop momenta). Withinthecomplex-massrenormalizationscheme,suchapowercountingisrespected intherangeofenergiesclosetotheRopermass. ThedressedpropagatoroftheRoper i iS (p)= , (3.8) R p/−z −Σ (p/) χ R whereΣ (p/)denotestheself-energy,hasacomplexpolewhichisobtainedfromtheequation R z−z −Σ (z)=0. (3.9) χ R ToorderO(q3)theRoperself-energyconsistsofatree-ordercontribution Σ =4c∗M2, (3.10) tree 1 andtheloopdiagramsshowninFig.2. Forthediagrams(a),(b),and(c)ofFig.2weobtain Σ = 3g2NR (cid:2)Oˆ (m)A (cid:0)m2(cid:1)+Oˆ (m)A (cid:0)M2(cid:1)+Oˆ (m)B (cid:0)p2,m2,M2(cid:1)(cid:3), (3.11) (a) 128π2F2 1 0 2 0 3 0 Σ = 3g2R (cid:104)Oˆ (z )A (cid:16)z2(cid:17)+Oˆ (z )A (cid:0)M2(cid:1)+Oˆ (z )B (cid:16)p2,z2,M2(cid:17)(cid:105), (3.12) (b) 128π2F2 1 χ 0 χ 2 χ 0 3 χ 0 χ g2 (cid:104) (cid:16) (cid:17) (cid:16) (cid:17)(cid:105) Σ = ∆R Oˆ +Oˆ A z2 +Oˆ A (cid:0)M2(cid:1)+Oˆ B p2,z2 ,M2 , (3.13) (c) 48π2F2 4 5 0 ∆χ 6 0 7 0 ∆χ where (cid:18) x2(cid:19) Oˆ (x) = p/ 1+ +2x, 1 p2 (cid:18) x2(cid:19) Oˆ (x) = p/ 1− , 2 p2 (cid:34) (cid:35) (cid:18) x2(cid:19)2 (cid:18) x2(cid:19) Oˆ (x) = p/ −p2 1− +M2 1+ +2M2x. 3 p2 p2 6 Complexmassrenormalization J.Gegelia (cid:34) (cid:35) 1 p2−3M2 2(p2)2−3M4−8p2M2 Oˆ = 3p/z2 −12p2z −4p/p2+4p2 +p/ , 4 6 ∆χ ∆χ z z2 ∆χ ∆χ Oˆ = 1 (cid:34)p/z2 +2p2z −p/(cid:0)2M2+p2(cid:1)+2p2p2−M2 +p/(cid:0)M2−p2(cid:1)2(cid:35), 5 p2 ∆χ ∆χ z z2 ∆χ ∆χ (cid:34) (cid:35) 1 M2+p2 M4−3p2M2−(p2)2 Oˆ = − p/z2 +2p2z −2M2p/−2p2 +p/ , 6 p2 ∆χ ∆χ z z2 ∆χ ∆χ Oˆ = − 1 (cid:104)p/z2 +2p2z +p/(cid:0)p2−M2(cid:1)(cid:105)(cid:34)z2 −2(cid:0)M2+p2(cid:1)+(cid:0)M2−p2(cid:1)2(cid:35). 7 p2 ∆χ ∆χ ∆χ z2 ∆χ To implement the complex-mass renormalization scheme, in analogy to Ref. [6], we expand the self-energy loop diagrams in powers of M, p/−z , and p2−z2, which all count as O(q). We χ χ subtractthosetermswhichviolatethepowercounting.Thesubtractiontermsat p/ =z read χ 3g2 (m+z )2(cid:20) (cid:16) (cid:17) (cid:21) ΣST = − NR χ (m−z )2B z2,0,m2 −A (cid:0)m2(cid:1) (a) 128π2F2z χ 0 χ 0 χ 3g2 (m+z )M2(cid:20) m + NR χ −2m3ln −iπm3+z2m−32π2z3λ 64π2F2z3 µ χ χ χ (cid:35) (cid:16) (cid:17) z2 −m2 + m3−z3 ln χ +iπz3 , χ µ2 χ 3g2z (cid:16) (cid:17) 3g2z M2(cid:20) z (cid:21) ΣST = R χ A z2 − R χ 32π2λ+2ln χ −1 , (b) 32π2F2 0 χ 32π2F2 µ g2 (cid:104) (cid:16) (cid:17) ΣST = − ∆R 6(z −z )2(z +z )4B z2,0,z2 (c) 288F2π2z2 z ∆χ χ ∆χ χ 0 χ ∆χ ∆χ χ +z2(cid:0)−3z4 +12z z3 +4z2z2 −4z3z −2z4(cid:1) χ ∆χ χ ∆χ χ ∆χ χ ∆χ χ (cid:16) (cid:17) (cid:16) (cid:17)(cid:105) −6 z4 +2z z3 −z2z2 +2z3z +z4 A z2 ∆χ χ ∆χ χ ∆χ χ ∆χ χ 0 ∆χ g2 M2 (cid:20) z + ∆R −6iπz6 −6(2z +3z )z5 ln ∆χ −9iπz z5 +6z2z4 72π2F2z2 z3 ∆χ ∆χ χ ∆χ µ χ ∆χ χ ∆χ ∆χ χ +9z3z3 +3z4z2 −288π2λz5z +9iπz5z +z6 −192π2λz6 χ ∆χ χ ∆χ χ ∆χ χ ∆χ χ χ (cid:35) (cid:16) (cid:17) z2 −z2 + 6z6 +9z z5 −9z5z −6z6 ln χ ∆χ +6iπz6 . (3.14) ∆χ χ ∆χ χ ∆χ χ µ2 χ The above expressions of Eq. (3.14) are exactly canceled by contributions of δz and δc∗. The χ 1 poleoftheRoperpropagatortothirdorderisgivenbytheexpression z=z −4c∗M2+(cid:2)Σ +Σ +Σ (cid:3) −ΣST−ΣST−ΣST. (3.15) χ 1 (a) (b) (c) p/=z (a) (b) (c) χ ItiseasilyshownthattheexpansionofEq.(3.15)satisfiesthepowercounting,i.e.isofO(q3). 4. Summary WehaveconsideredaneffectivefieldtheoryofresonancesinteractingwithGoldstonebosons using the complex-mass renormalization scheme. A systematic power counting emerging within 7 Complexmassrenormalization J.Gegelia this scheme allows one to calculate the physical quantities in powers of small parameters. As an application we have calculated the pole masses and the widths of the ρ meson and the Roper resonance which are of particular interest in the context of lattice extrapolations. The masses and thewidthsinthechirallimitareconsideredasinputparameterswithinthisapproach. Acknowledgments ThisworkwassupportedbytheDeutscheForschungsgemeinschaft(SFB443). Wethankthe organizersforaverypleasantmeeting. References [1] J.Gasser,M.E.SainioandA.Švarc,Nucl.Phys.B307,779(1988). [2] E.E.JenkinsandA.V.Manohar,Phys.Lett.B255,558(1991). [3] H.B.Tang,arXiv:hep-ph/9607436. [4] T.BecherandH.Leutwyler,Eur.Phys.J.C9,643(1999). [5] J.GegeliaandG.Japaridze,Phys.Rev.D60,114038(1999). [6] T.Fuchs,J.Gegelia,G.Japaridze,andS.Scherer,Phys.Rev.D68,056005(2003). [7] T.R.Hemmert,B.R.Holstein,andJ.Kambor,J.Phys.G24,1831(1998). [8] V.PascalutsaandD.R.Phillips,Phys.Rev.C67,055202(2003). [9] V.Bernard,T.R.Hemmert,andU.-G.Meißner,Phys.Lett.B565,137(2003). [10] C.Hacker,N.Wies,J.Gegelia,andS.Scherer,Phys.Rev.C72,055203(2005). [11] V.Pascalutsa,M.Vanderhaeghen,andS.N.Yang,Phys.Rept.437,125(2007). [12] R.G.Stuart,inZ0Physics,ed.J.TranThanhVan(EditionsFrontieres,Gif-sur-Yvette,1990),p.41. [13] A.Denner,S.Dittmaier,M.Roth,andD.Wackeroth,Nucl.Phys.B560,33(1999). [14] A.DennerandS.Dittmaier,Nucl.Phys.Proc.Suppl.160,22(2006). [15] D.Djukanovic,J.Gegelia,A.Keller,andS.Scherer,Phys.Lett.B680,235(2009). [16] D.Djukanovic,J.Gegelia,andS.Scherer,arXiv:0903.0736[hep-ph]. [17] G.Ecker,J.Gasser,H.Leutwyler,A.Pich,andE.deRafael,Phys.Lett.B223,425(1989). [18] K.KawarabayashiandM.Suzuki,Phys.Rev.Lett.16,255(1966). [19] RiazuddinandFayyazuddin,Phys.Rev.147,1071(1966). [20] W.RaritaandJ.S.Schwinger,Phys.Rev.60,61(1941). [21] B.Borasoy,P.C.Bruns,U.-G.Meißner,andR.Lewis,Phys.Lett.B641,294(2006). [22] S.Weinberg,Nucl.Phys.B363,3(1991). 8

See more

The list of books you might like