Logout succeed
Logout succeed. See you again!

Boolean Representations of Simplicial Complexes and Matroids PDF
Preview Boolean Representations of Simplicial Complexes and Matroids
Springer Monographs in Mathematics John Rhodes Pedro V. Silva Boolean Representations of Simplicial Complexes and Matroids Springer Monographs in Mathematics Moreinformationaboutthisseriesathttp://www.springer.com/series/3733 John Rhodes • Pedro V. Silva Boolean Representations of Simplicial Complexes and Matroids 123 JohnRhodes PedroV.Silva DepartmentofMathematics DepartmentofMathematics UniversityofCaliforniaatBerkeley UniversityofPorto Berkeley,CA,USA Porto,Portugal ISSN1439-7382 ISSN2196-9922 (electronic) SpringerMonographsinMathematics ISBN978-3-319-15113-7 ISBN978-3-319-15114-4 (eBook) DOI10.1007/978-3-319-15114-4 LibraryofCongressControlNumber:2015931927 Mathematics Subject Classification (2010): 03E05, 03G10, 05-00, 05B25, 05B30, 05B35, 05D15, 05E45,06-00,06A11,06A12,06B15,15B34,16Y60,51E14,55P15,55U10 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www. springer.com) InmemoryofGian-CarloRota Acknowledgments Both the authors thank Anne Schilling, Benjamin Steinberg, James Oxley, and StuartMargolisfortheirvaluablecomments. JohnRhodeswouldliketothankhisremarkablewife,LauraMorland,forallher loveandsupport. PedroV.SilvaisgratefultohiswifeMargaridaforherenduringsupportandfor everythingelse!Healsoacknowledgessupportfrom (cid:129) TheEuropeanRegionalDevelopmentFundthroughtheprogrammeCOMPETE and the Portuguese Government through FCT (Fundação para a Ciência e a Tecnologia)undertheprojectPEst-C/MAT/UI0144/2013 (cid:129) CNPq(Brazil)throughaBJT-Agrant(process313768/2013-7) vii Contents 1 Introduction .................................................................. 1 2 BooleanandSuperbooleanMatrices ...................................... 9 2.1 TheBooleanandtheSuperbooleanSemirings........................ 9 2.2 SuperbooleanMatrices................................................. 11 3 PosetsandLattices........................................................... 17 3.1 BasicNotions........................................................... 17 3.2 RepresentationofPosets............................................... 21 3.3 _-GeneratingSubsetsofLattices...................................... 22 3.4 TheLatticeofFlatsofaMatrix........................................ 23 3.5 MatricesVersusLattices ............................................... 24 3.6 c-Independenceandc-Rank............................................ 28 4 SimplicialComplexes........................................................ 31 4.1 TheCombinatorialPerspective........................................ 31 4.1.1 Matroids ........................................................ 32 4.1.2 Graphs .......................................................... 33 4.2 Flats..................................................................... 34 5 BooleanRepresentations.................................................... 39 5.1 SuperbooleanandBooleanRepresentations .......................... 39 5.2 TheCanonicalBooleanRepresentation............................... 41 5.3 LowDimensions........................................................ 48 5.4 LatticeRepresentations ................................................ 49 5.5 TheLatticeofLatticeRepresentations................................ 50 5.6 MinimumDegree....................................................... 58 5.7 Examples................................................................ 62 5.7.1 TheTetrahedronComplexesT3andT2 ....................... 62 5.7.2 TheFanoMatroid.............................................. 68 5.7.3 TheUniformMatroidU3;n..................................... 73 5.7.4 SteinerSystems ................................................ 80 ix